第五次初階課程授課紀錄

授課時間	民國 100 年 10 月 5日(星期三	三) 下	午 1:15 至 3:05			
授課地點	大仁樓 5 樓階梯教室					
授課師資	許榮中	紀錄	洪郁淳			
上課學生	91 人					
請假學生	3 人					
授課大綱 (至少60字,並以 條列方式敘述)	少 60 字,並以 3 Geomorphic Approach					

內容目錄

_	•	演講海報	<u>子</u>	第 2	頁
二	•	師資簡介	- <u>第</u>	53	<u>頁</u>
三	•	演講簡報	- <u>第</u>	54	<u>頁</u>
四	`	課程照片	<u>第</u>	<u>16</u>	<u>頁</u>
五	•	演講內容	第	17	頁

一、演講海報

敬邀您参加

教育部補助大學校院培育海洋科技實務人才計畫 初階實務課程 - 船廠經營管理

如何避免漁港防波堤的突堤效應 許祭中

中山大學海洋環境及工程學系教授

100年10月5日 下午1:15至3:05 大仁樓5樓階梯教室

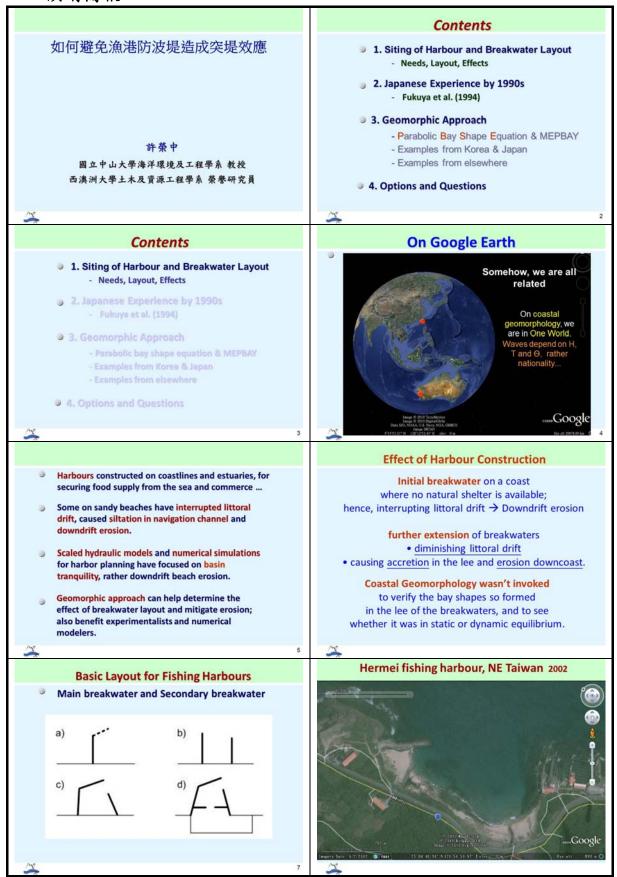
國立高雄海洋科技大學培育海洋科技實務人才計畫團隊 敬邀

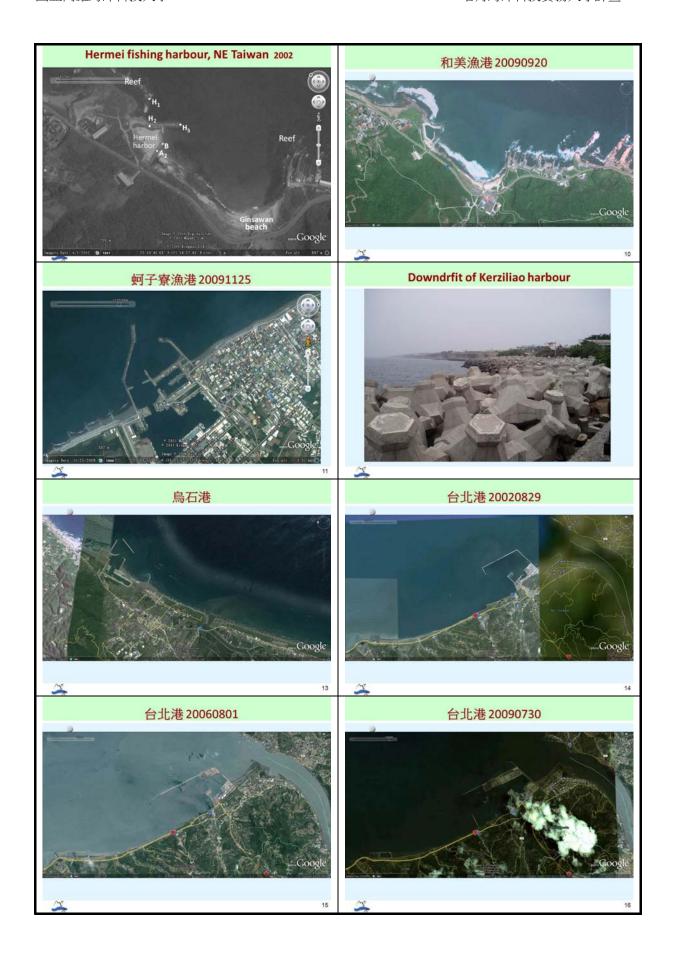
二、師資簡介

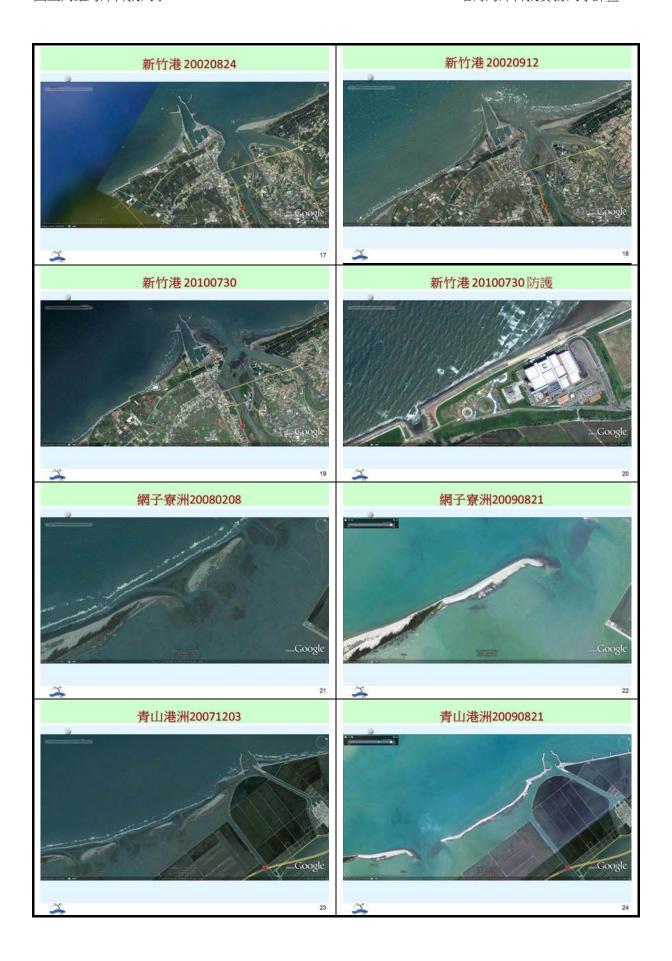
<u>一 </u>									
中文姓名	許榮中		公司電	話 (07) 5		252000#5076			
E-mail		jrchsu@mail.nsysu.edu.tw							
主要學歷									
畢業學校	國別	主修	學門系所	學位		起迄年月			
省立成功大學	中華民國	図 水	利工程	工學士		1962-1966			
亞洲理工學院	泰國	水資	源工程	工學碩士		1969-1971			
西澳洲大學	澳大利亞	臣海	海岸工程		博士	1973-1979			
現職及	現職及與專長相關之經歷(由最近工作經驗依序往前追溯)								
公司名稱		部門		職稱		起迄年月			
國立中山大學		海洋環境及工程學系		教授		2000.2~迄今			
西澳洲大學		土木及資源工程學系		榮譽研究員		2000~迄今			
荷蘭 Elsevier Science		海岸工程 Coastal Engineering 學術期刊		Headland-Bay Beaches 專刊 Guest Editor		2006~2009			
國立中山大學		海洋物理研究所		(兼)所長		2001~2006			
國立中山大學		海下技術研究所		(兼)所長		2000~2001			
國科會、政府水利單位		多項海洋內波傳遞及海 岸防護相關的研究計畫		計畫主持人		2000~迄今			
美國海岸教育及研究基金會		Journal of Coastal Research		編輯		2000~迄今			
World Scientific 代理日本土 木工程學會		Coastal Engineering Journal		編輯委員 員	員會委	1997~迄今			
荷蘭 Elsevier Science		Coastal Engineering		編輯委員會委 員		1996~迄今			
西澳洲大學		環境工利	環境工程學系			1995~2000			
しいサークキャー									

本計畫中負責項目

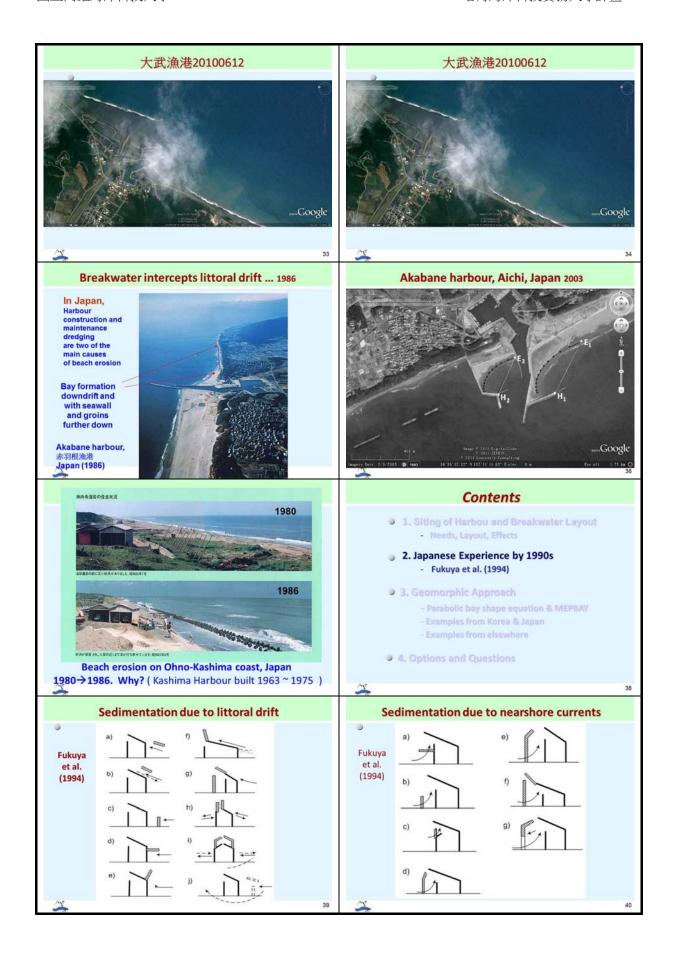
初階實務演講課程:

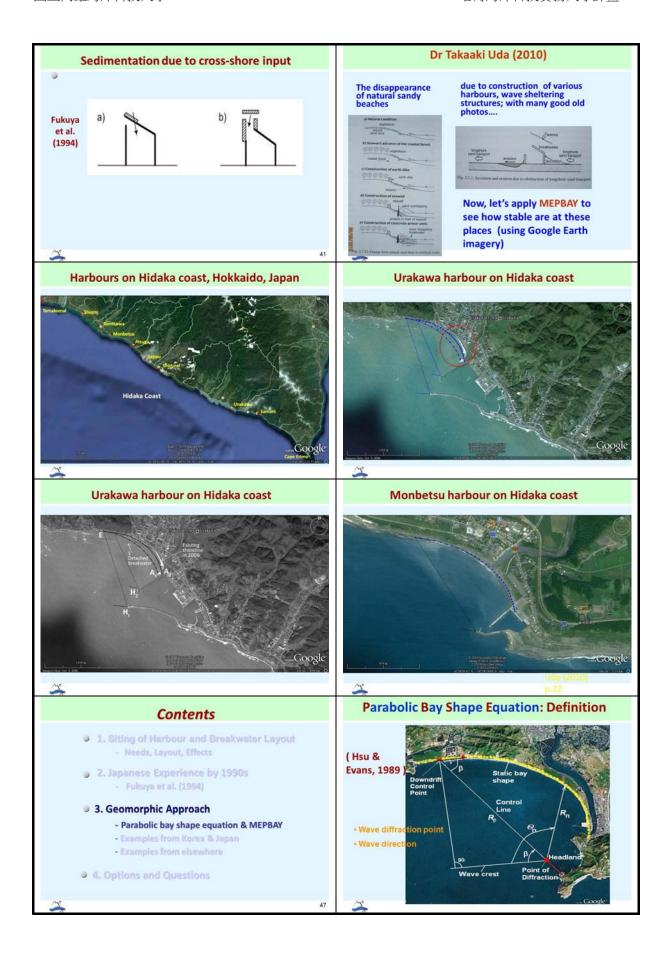

主題:如何避免漁港防波堤的突堤效應


日期:100年10月5日


時間:下午1:15至3:05


地點:大仁樓5樓階梯教室


三、演講簡報



(Empirical) Parabolic Bay Shape Equation

(Hsu and Evans, 1989)

 $R_n/R_\beta = C_o + C_1 (\beta/\theta_n) + C_2 (\beta/\theta_n)^2$

Based on data from bay beaches believed in static equilibrium Basic parameters:

- β Reference wave obliquity
- may be measured or modified by structure installation R_B Control Line

Point on shoreline in static equilibrium:

- R_n Radius distance to a point on beach

θ_n Polar angle C coef = $f(\beta)$, from regression analys

(for UPDATE, see Serizawa et al, 1996;

Kumada et al, 2002)

· 3 types of bay beach stability:

- 1). static equilibrium: predominant waves break simultaneously around whole bay periphery, hence littoral drift is almost non-existent, ... Stable if Q ...
- 2). dynamic equilibrium: sediment supply from updrift and/or riverain source within the bay required to maintain its stability, ... Retreat if Q 1
- 3). natural reshaping/unstable: associated with wave sheltering effect due to addition or extension of harbour breakwater, detached breakwater etc.
- · Only static bay shape can be predicted empirically using wave direction alone (Hsu and Evans, 1989)

Stability of Headland-Bay Beaches

Definition of headland: natural or man-made

- (1) Natural: rocky outcrops, capes, promontories, offshore islands, tip of a progressing barrier spit, submerged reefs, shoals within embayment
- (2) Man-made: diffraction tips of a groin, detached breakwater, harbour breakwater, and training wall at an estuary
- HBBes appear in all sizes, shapes and

In natural condition their dimensions may vary from several tens meters to few kilometers.

Software MEPBAY for Static Bay Shape (and SMC)

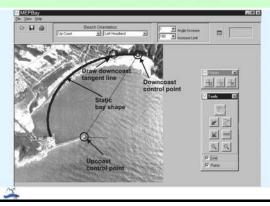
MEPBAY

(Model for Equilibrium Planform of BAY beaches)

can be downloaded from

http://siaiacad17.univali.br/mepbay site

Technical paper: Klein et al. (2003)


Klein, A.H.F., A. Vargas, A.L.A. Raabe, and J.R.C. Hsu "Visual assessment of bayed beach stability using computer software"

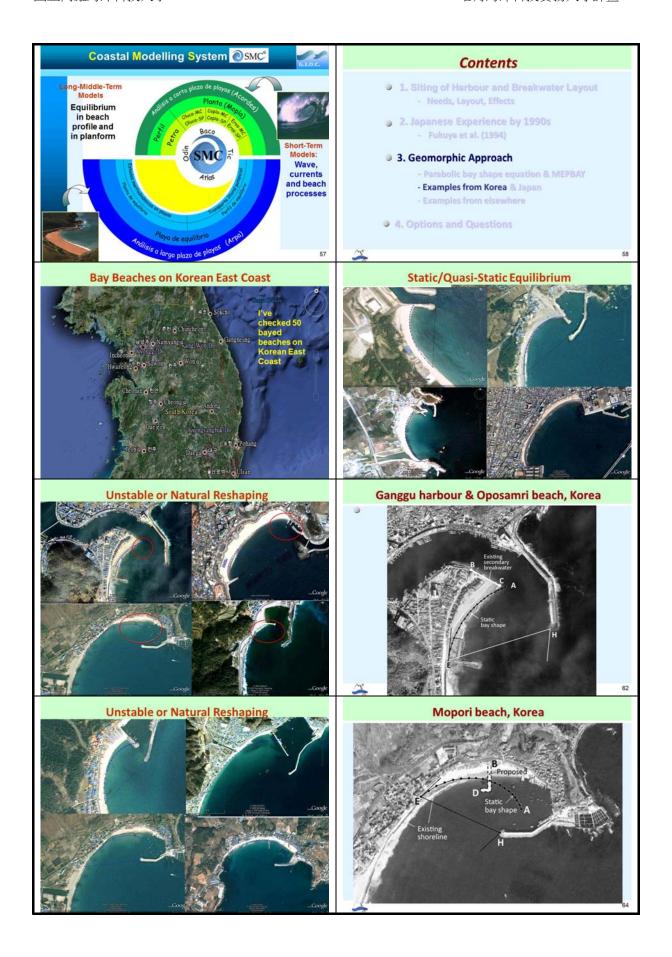
Computers & Geosciences, 29: 1249-1257.

Static Equilibrium

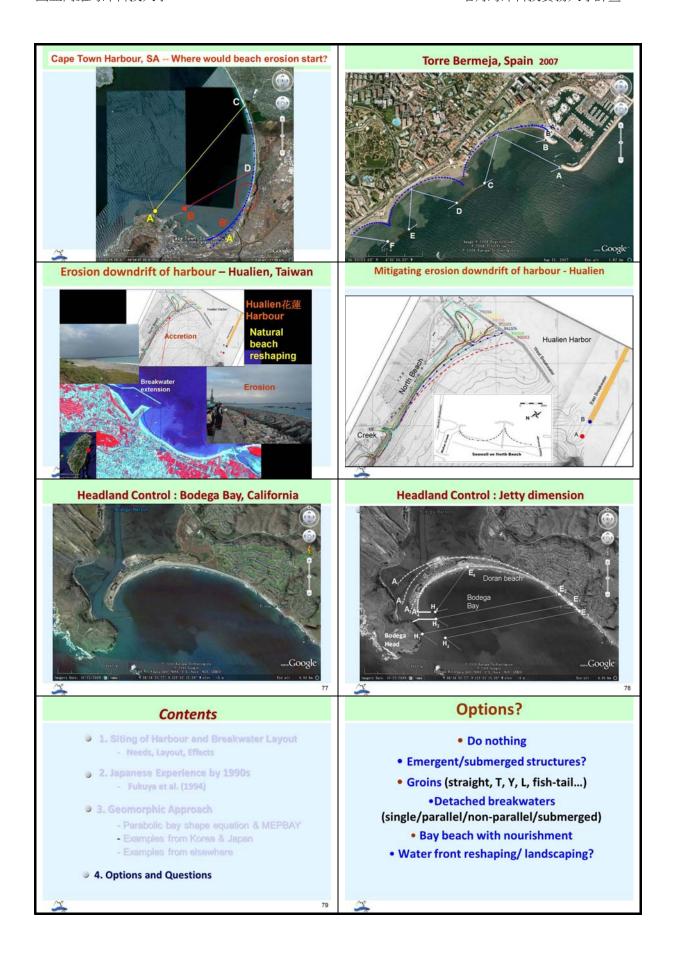
Unstable or Natural Reshaping

Dynamic Equilibrium

Universidad de Cantabria UC


SMC

Coastal Modelling System


◎SMC°

Prof. Raul Medina Prof. Mauricio Gonzalez http://www.smc.unican.es 1995 - 2003 G.I.O.C

Ocean & Coastal Research Gro



四、 授課照片

介紹演講者一許榮中教授

演講者-許榮中教授

說明地貌的方法可以幫助確定防隄佈局的作用

說明漁港基本的佈局

以和美漁港說明突堤效應

說明沉積沿岸漂移的現象

以花蓮港為例說明突堤造成之港口侵蝕

用 google earth 說明台灣港口的地貌

五、演講內容

本週邀請到中山大學海洋環境及工程學系教授-許榮中教授來為我們介紹如何避免漁港防波堤造成突堤效應。

我是在台南出生,小學二年級搬到台東長大,最後大學回到成大念書,畢業後,當完兵回到成大擔任助教,最後去到泰國亞洲理工學院念碩士班,最後在西澳洲大學唸完博士班,畢業之後就留在那裏當老師,當了27年,在55歲時就提早退休回到台灣。我的專長是海岸保護,我所專研的海岸保護不是指經常看在的海堤,而是建造海灣,在將來的海洋工程中關於海灣都會看到我的名字,因此今天要跟各位介紹的是突堤效應,船舶的停靠地點為漁港、商港,港口需要防浪、防沙,防浪就需要防波堤,這跟漁港、商港都有關聯,可是到目前為止,幾乎所有學校,在設計防坡堤時,都沒有考慮到地形關係,都做實驗、數據分析,來判斷港池內靜穩度好不好,而未考慮防坡堤的頂端需要伸到多遠,這是我今天要跟大家討論的問題。

突堤效應是由台大地理系張石角教授所說的。何謂突堤?與海岸垂直,或是斜向伸出的部分,我們稱為突堤,也就是突出海岸線的提,突堤也可以做為防波堤、防沙堤,下游的堤為防沙,也稱為副防波堤,上游的堤為擋浪用,為主防波堤。

和美港在建造完成後,沙堆積在航道上,造成船隻無法通行,所以港口的防波堤的長度、走向是相當的重要,人類發展的重要性都是由港口起家,無論是河內的通航或是沿著海岸線都通航都需要港口,有了船舶後,港口需要避風、擋浪,因此需要防波堤,但是在建造後,沒有靠慮到對下游的影響,反而防波堤的建造就會對下游海岸造成負面影響,包括海岸侵蝕。離我們最近的蚵仔寮、彌陀,在台灣海岸工程界被稱為台灣海岸之癌,在30年前,還擁有很長的沙灘,現在已經都沒了,現在蚵仔寮附近,水深約為5公尺,但所看到的都是消波塊,也許你不會對他感到興趣,但這都是很現實的問題。日本跟我們一樣都有颱風,日本在這方面是如何預防?遇到這些問題我們又該如何因應?以上是我今天所要跟各位談論的大鋼。

首先跟各位討論,港口該如何選擇?防波堤要怎麼做?是否有同學注意過長的防波堤在南方或是北方較常見?這是因為颱風風浪還是季節風浪所衍生出來的?無論到哪裡,在港口要觀察的是浪從哪個方向來,一般來說與季節風有關係,每個地方夏天與冬天的季節風又不同,無論在哪個地方,這些理論是不變的。

港口一般而言是沿著海岸線或是河口處建造的,他是為了人類生活必需品的供給所建造的,台灣漁港的密度可堪稱是世界第一,又以澎湖為甚,台灣包括外島地區約有 240 個漁港,其中澎湖就佔有 69 個,澎湖的海岸線約為 340 公里,約 5 公里就有一個漁港,台灣漁港密度是相當高的,而有些地區的確造成下游地區的負面影響。無論是生活必需的供給,或是對外貿易都需要透過港口,有些漁港是在沙石的海岸上,類別人部分的公共設施建築在接近海邊的地方,在沙灘上蓋了港口,建築物大部分的公共設施建築在接近海邊的地方,在沙灘上蓋了港口,建築物大部分的公共設施建築在接近海邊的地方,在沙灘上蓋了港口,建築物大部分的公共沒施建築在接近海邊的地方,在沙灘上蓋了港口,建築物關截了沿岸的漂沙,造成航道阻塞,甚至漂沙造成下游海岸的侵蝕。在航道的沙必須挖掘,根據環境保護法,航道挖掘出來的沙必須運至 12海哩外才能丟棄,這時海岸邊的沙不斷的流失,此對下游產生的負面影像更加的大。

在建造漁港時又該如何規劃?在建造港口時,政府會邀請學校老師經過建醮計畫做模擬試驗或數值分析,將實際防波堤依實際比例縮小,在實驗室做模型實驗,再決定在港口內波浪、靜穩度的問題,要盡可能使靜穩度減少。在港池中,一般所討論的為靜穩度,很少討論到漂沙問題。過去在港口配置上利用模擬、分析等方式,針對的是港池內的靜穩度問題,漸漸有人發現這是不完整的,開始討論地形的觀念,海岸工程討論到最後都是近岸漂沙問題,而不是有浪的問題,要建造防波堤,前面放消波塊,擋浪是沒問題的,但沙是擋不住的,所以到最後需要解決的問題都是漂沙的問題。

港口在建造後,產生的問題是漂沙,隨著生活水準的提高、經濟的需求、人口壓力、對外通商等問題,港口在建造後往往會再擴建。以高雄港口為例,從 1 港口防波堤開始到 2 港口防波堤約有 12 公里,而目前高雄港務局規劃在高雄港 2 港口的防波堤外圍建造貨櫃轉運中心,這將對旗津附近海域造成影響,因此在建造前就必須先防止,否則在 5~10 年後問題會更加嚴重。因此,許多防波堤在開始時都是很短的,因為經濟需求等因素不斷的逐漸擴張。在世界各地,有些防波堤長達三公里,水深達 20~30,周期的浪在水深 6 米沙子依然會流動,所以當防波堤已深達 20 米,水下的沙就不會移動了,遇到颱風時,水深 20 米的沙子會被流走,防波堤堤頭水深 20 米,當沙被沖走了,就不會再回來了,因此造成大港的下游沙幾乎被擋住的,這是原因之一。

漁港的基本配置包括主要防波堤,副堤,主堤是為了擋浪,副堤是 為了防沙,突堤的功用是防波。有些地方是兩條突堤,小船是拖上岸的。 兩條突堤慢慢面變成斜的、彎曲的,假使波浪從左側來,這是不好的。 台灣第一個漁港突堤效應,由台大張老師所發表,在 2002 年產生。和美港,兩個礁岩之間,早期防波堤短短的,對金沙灣沒有影響,後來有人說防波堤太短了沒辦法擋浪,因此開始延長,結果不到兩、三個星期,沙子開始堆積。浪南下經過繞射點,經由繞射點下來的這一條線為波向線,成為遮蔽區,遮蔽區內浪較小,可是成為近岸循環流,近岸循環流從遮蔽線外開始作用,沙就被帶上來了,防波堤後浪雖變小,可是卻形成近岸循環流,近岸循環流與沿岸循環流方向是相反的,因此近岸循環流會將沙帶至港池後方,整個分析大致上是這樣。這些論點是曾在海岸工程雜誌上發表過,幾年之後漁業署整治和美港的沙子堆積問題,同時建造了新的副堤,這就是和美港的現在情況。

蚵子寮漁港,左營軍港位於它的南端方,海堤需要突堤,越南邊沙 積的越少, 北邊方向越多, 往北邊走看到的都是消波塊, 在20多年前, 60~70 公尺都是沙灘,而現在都是消波塊,甚至到水深5公尺下也都是。 風鼻頭北邊市政府都發局準備開發遊艇港,海堤為-8米,頂高在8.5米, 上下共有 16 公尺,是從上到下都要堆消波塊,由此可見需要多少的消 波塊才足夠。烏石港,從頭城到蘭陽溪口約有 50~60 道突堤,每道約 40~60 公尺左右。台北港到目前為止,發生在社會上的事情太多了,早 期淡水港、台北港,現在是基隆港的輔助港,對他是產生引響的,當道 離岸堤時,沙是否會往後跑呢?這是很少人在討論的問題。新竹港,鳳 山溪、南寮溪在他的北邊,當東北季風發生時,兩道非常長的涂堤是為 了擋沙,往往在漁港的下游,假如有沙灘會向西子灣一樣,西子灣事實 上是因為高雄 1 港口北防波堤後面跟柴山礁岩區的沙灘所形成的。台南 縣網子寮,在2008時,台南縣六大沙洲之一,其中間缺口長約100公 尺,後來台南縣政府將它修補好,在北邊青山港洲,在 2007 時沙還很 多,兩年後沙銳減;頂頭額州,在2008年時尚有很多離岸堤,後面也 有沙,現在沙已經沒有了,這都是自然環境的改變;大武漁港,東部從 台東平陽溪、知本溪、太麻里溪,所有的沙都往下走,大武漁港是唯一 這個方向的漁港,在2001年時,情況尚可,一個小漁港約僅有20多條 艘舢舨,2005年成大郭金龍老師的學生的論文中,將突堤延長 250 公 尺,擋住更多的沙,沙還沒堆積之前,放下約為 40 噸的消波塊,但是 在海中僅有 20 噸的重量,颱風侵襲消波塊就不見了,莫拉克颱風侵台 後造成海砂堆積在海岸邊,所以小漁港僅會造成小災害是不見得的,往 往是較大的港口較沒問題,目前公路局有個計劃,在大武跟多良附近準 備開闢隧道,要將挖掘出來的石頭去養灘,這是目前屏東公路局準備要 執行的計畫。海沙的堆積造成港口無法出入,船舶需要用吊的,因此小 漁港也造成這些毛病。日本跟台灣差異不大,愛知縣附近有個港口做了 防波堤,擋住沙,下游如同西子灣一樣形成沙灘,再往下海堤為突堤,

我利用了 Google earth 跟我自己的攻勢去檢驗,形狀上差異是不大的, 下游積了沙,另一邊則是沒有的,這是海岸防護的一種,稱為離岸堤。 在日本鹿島港,防波堤往外海延伸,大約25米水深,全長3200公尺, 1980~1986 鹿島港防波堤向外海延伸,擋住南邊往北邊的沙,因此造成 海岸線流失。日本約有 3000 多個漁港,在 1994 年左右做了一個分析, 結果說港口最後的問題都是漂沙問題,第一,防止漂沙進入航道、港區 造成下游海岸侵蝕,他們分析結果為,這些漂沙是從沿岸漂沙進港後該 如何阻擋,首先任為要在上游端就阻擋,當完全積滿時才會漂至航道; 有些認為加長突堤; 有些認為在防波堤外加上一道離岸堤; 這在日本是 有相當多的案例,有些人也認為沙為由旁邊進入航道,因此在副堤的下 游側蓋了新的防波堤,因此有很多方式,像是馬字型的突堤,當漂沙來 源是來自上游時,應對方式是如此。下游近岸循環流,擋浪是不可能的, 當沙是沒問題的,這些都是防止沙從下游進到航道、港區的不同方。第 三種,為颱風狀況下的因應,當浪直接進到港區,在外面建一道離岸堤, 兩側各加上一道防波堤,這是在 10 多年前日本在防止漁港漂沙方面的 狀況。

真正建造港口時,防波堤有一長一短,長邊是為了擋浪,沿岸流會帶沙上來,下游時是近岸循環流,會造成下游海岸侵蝕,而我們要處理的就是這部分的問題。相同的地方會有不同的體質、不同的命運,比如說北海道最東南角,浪由南往北流,日高海岸上有8個漁港,Urakawa港曾經擴建過,藍線是我自己的公式去驗測,在藍線跟陸地之間是需要陸地的,這時對下游就沒有侵蝕的危險,所以儘管建有離岸堤,但仍然有海岸侵蝕的可能性。離Urakawa港不遠的Monbetsu港,有一道堤阻擋了從東南邊來的沙,用主防波堤的夾角做驗測,藍線是指海洋或海岸地形、地貌觀念內能靜態穩定的彎線,這裡主要是告訴同學同一個地方,相隔不遠,有些港口還是有被侵蝕的可能性,但有些不用保護也沒問題,這是相當重要的。

以上所提及的藍線,是在 1987 年在澳洲經過 1~2 年的時間所研究出來的,任何灣是否可用數學公式展示出來?繞射點可能是自然夾頭,也有可能是人工夾頭,利用繞射點得到波向線、波峰線,再利用及座標的方式,經過幾 10 個小時分析出來的灣與沒有港口、安定的海灣資料彙整,在使用及座標得到每一點對繞射點的角度,這就是從他反應過來的,所以量它的長度、角度,將彙整過後的資料放在 2 次多項式內,將每個灣,有三個係數,共有 27 個灣,將這些係數回歸一次,經過二次回歸後就可以得到係數,因此將來無論走到哪,只要能量出β、控制線、長度、角度,就都可以辨測海灣是否正確,因此夾頭是非常重要的,天

然的夾頭是無法改變的,但人工的夾頭可以選擇在最好的地點讓他存下來,因此設計時可以設計在最好的地點,設計錯誤將使下游產生負面影響,這是今天要跟各位介紹的道理。

世界上的海灣有多少種?安定性可分為靜態安定、動態安定。在離島上的灣不受河川、水庫、漁港影響,幾百年後還是不會變形,因此它是靜態平衡,而我們是以靜態平衡與任何的海灣做比較。在沒有外來因素下它可以平衡,萬一有沙進來了,它自己可以平衡,我們稱為動態平衡;有些是因為做人工防波堤,造成的影響。

MEPBAY 是我與巴西朋友共同開發的軟體,輸入海岸方位、夾頭角 度等等,根據座標圖標出 H、E、W 等位置,首先我們必須瞭解進行的 過程中,折射、繞射會怎麼走,假如對這些物理現象不了解,那就沒辦 法進行,所以為什麼需要在實驗室平面水池做實驗呢?因為在現場是看 不到的,必須站得很高才看的到,站在海岸線是看不到的。將以上數據 資料鍵入完成後,就可以開始計算分析,軟體會將計算結果顯示在圖面 上,而這些點為靜態海灣形狀,圖面上所顯示的為靜態海灣,不需要任 何人工的疏沙、給沙,都可以保持穩定,但遇颱風免不了沙還是會帶到 海裡去,遇到這樣的情況,可以根據剛才的步驟可以的到新的曲線,得 到的結果與靜態曲線不同,這代表是動態海灣,如果一百年都不會變 動,代表沙被帶到海岸邊,河將沙帶到海灣,正好滿足波浪往下帶的需 要,這就是動態平衡,萬一上游建水庫、漁港、攔沙壩,沙不再被帶下 來,海岸線就會往後退,這是巴西的實際例子,也確實存在過的問題。 在做港口時,在安定線至陸地之間內若有分布水,則必須等到安定線內 堆積完沙,這個海灣才會安定,這跟剛才是不一樣的,如果這個海灣不 養灘,則會被侵蝕。

兩年前我到韓國做演講時,我先把他的灣做整理比較,有幾個地方值得大家留意,藍色曲線為接近靜態海灣曲線,有些地方的曲線超過實際海岸線,這必須養灘,否則海灘將被侵蝕,同樣道理,其他地方的海灣也是以此判定,修正的方式可使用加上一道防波堤,在預測會積沙處前方加上一道防沙堤,因此我們這套理論可以幫助人們設計副防波堤的長度、主防波堤的角度是多少。

日本神奈川江之島,位於東於東京東南方 80 多公里處,以我們的公式跟海灣做比較也差不多;去年在廣島大學有家顧問公司邀請我參與他們的 project,有一個漁港的港口會積沙,港口防波堤的長度是相當重要的,在北邊的突堤是沒問題的,南邊的突堤與藍線接觸,代表浪大時會有懸浮物質會漂上來,造成堆積,要如何防止大浪時懸浮質堆積在航

道上?最簡單的方法就是在浪的上游處建一小突堤。

港口隨著經濟需要不斷的變化,日本大洗港的擴張,當每次向南邊延伸,越往南邊走,浪的方向都是不變的,我曾在文章中探討存在的因素,有些地方的改變是好的,像是伊郎有位學者投稿到海岸工程雜誌,在文章中用到我的公式,在 Beris 港在加上突堤後,使用我的公式做比較後與實際狀況是一樣的,因此只要夾頭不再改變,海岸線是保得住的。南非 Cape Town港,在 2000年時,也有使用我們的公式去探討何處會發生海岸侵蝕。西班牙每年花費兩億歐元在海岸工程上,而台灣從民國 98年至 103年,水利署花費 13億在全國海岸工程上,其中一半在工程費用上,另外一半在監測、調查、規劃、教育宣導及搶修,而一個西子灣就花費一億,但全台灣有多少個地方需要做類似的工程,在這個部分上,台灣做得很少,但是國外卻相當重視。無論做了多少,當建蓋好港口,需要離岸堤來保護海灣。

花蓮港在還沒擴建前,航道是很窄的,在颱風時港內的浪會比港外的浪還要大,因此延長了防波堤約 2600 公尺,延長之後卻導致海沙堆積,利用地貌學、地形學的理念,將防波堤縮短,則可以避免這樣的問題。港口在河口時,導流堤要做多長?Bodega Bay, California 是西班牙的名字,從南美到北美都是他的名字,上面有個港,做了兩道導流堤,可是不是很理想,當沒有人工突堤時,沙洲可以保持安定性,當時導流堤從 H2 北邊做到 H4,如果可以做到 H3 時,則會跟現在的沙洲情況是一樣的,這些觀念在做模型實驗時,是相當方便的,這是要跟各位宣導的觀念。

當有問題發生時要該如何應變?不管它?沒經費所以不執行?花費兩三年做調查計畫?這是不能達成的。或者,建造離岸堤、突堤,、建造海灣、養灘,種種方式;以下我快速的跟各位介紹,突堤形狀有T型、錨狀形、L型等等;防波堤很難看的到後面有繞射,在英國挪威 Sea Palling,離岸堤的積沙不在中間,防波堤後有繞射線,所以地形是繞射的關係影響很大,可惜在任何學校堤及繞射不會討論到漂沙問題,當波跟漂沙問題放在一起,可以知道繞射受漂沙影響是很大的。新加坡從1970年開始就以海灣來保護海岸線,他們沒有颱風的侵襲,潮差約為3.5公尺,不需要使用消波塊。在泰國最大的石油港— Map Ta Phut,受到 Map Ta Phut 港口的影響,在 Rayong 的 12公里海岸線做了 67座離岸堤,13座魚尾巴,耗時三年。巴里島幾乎每一個飯店都有一個沙灘,與我的藍線也符合。西班牙,一年耗資兩億歐元整頓它的海灘。以上是我今天的內容,謝謝!