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a b s t r a c t

Protein derived from the sand eel, Hypoptychus dybowskii, was hydrolyzed using different proteases
(alcalase, neutrase, �-chymotrypsin, papain, pepsin, and trypsin) to produce an antioxidant peptide.
Antioxidant activity of hydrolysates was evaluated using DPPH radical scavenging activity. The papain
hydrolysate exhibited the highest antioxidative activity compared to other hydrolysates. The free rad-
eywords:
ntioxidant
eptide
and eel
PPH radical scavenging

ical scavenging activity of papain hydrolysate was 77.4% at 1.0 mg/ml. The peptide demonstrating the
strongest antioxidative activity was isolated from the hydrolysate using consecutive chromatography.
The amino acid sequences of purified peptide was identified as Ile–Val–Gly–Gly–Phe–Pro–His–Tyr–Leu
(1189 Da), and the EC50 value of antioxidant peptide was 22.75 �M. The purified peptide exhibited an
inhibitory effect against DNA oxidation induced by hydroxyl radical. The results of this study suggest that

ate is
ydrolysis
urification

sand eel protein hydrolys

. Introduction

Antioxidant activity is particularly important as oxidation is
common reaction that occurs in all living organisms [1]. Reac-

ive oxygen species (ROS), in particular the superoxide anion
•O2

−), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), are
nwanted metabolic byproducts of normal aerobic metabolism.
xidation of biomolecules has been identified as a free radical
ediated process, which results in numerous unfavorable impacts

n food and biological systems [2]. In aerobic organisms, harm-
ul radicals that inevitably form during the metabolism of oxygen
re associated with the occurrence of several disease conditions
ncluding atherosclerosis, inflammation, and cancer [2]. Cellular
ntioxidative enzymes such as superoxide dismutase (SOD), glu-
athione peroxidase (GPx), catalase (CAT), and some food-derived
utritional antioxidants, protect tissues from free radical medi-
ted oxidative injuries [3]. In foods, development of rancid flavor
nd undesirable chemical compounds are the result of free radical
ediated oxidation of fatty acids and lipids. Furthermore, oxidation

f food lipids leads to the deterioration of food quality and shortens
he shelf life. Even though the use of some synthetic antioxi-

ants to overcome these problems in the food industry is common,

t is under strict regulation because of potential health hazards.
ince some artificial antioxidants such as butylated hydroxyanisole
BHA), butylated hydroxytoluene (BHT) and t-butylhydroquinone
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a good source of natural antioxidants.
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(TBHQ) may pose potential health hazards, many studies have
been initiated to develop novel, safe and natural antioxidants [4].
Therefore, there is a growing interest to identify antioxidative
properties in many natural sources including some dietary protein
compounds. At the present, natural antioxidants such as vitamin
C, �-tocopherol and phenolic compounds in vegetables, fruits and
seeds possess the ability to reduce oxidative damage associated
with many diseases.

Recently, enzymatic hydrolysis with proteases has garnered
much attention. Protein hydrolysates or peptides affect health-
related functions such as blood pressure and antioxidant function
[5]. In this study, sand eel which is commonly used as food was eval-
uated in terms of its bioactivities after hydrolysis. A large number
of proteolysis products including peptides and amino acids have
been correlated with specific bioactivity [5].

Moreover, the researchers used various proteases to pro-
duce hydrolysates and to determine their functional activities.
Many studies on purification of the antioxidative peptides from
hydrolysates were done by gel filtration or ultrafiltration to deter-
mine the molecular weight distribution [6–8]. Protein hydrolysates
of fish have been reported to possess antioxidative, antihyper-
tensive, antimicrobial and immunomodulatory properties [9,10].
Even though the quantity of marine derived antioxidant is less
when compared with the antioxidant peptide derived from arti-

ficial materials, the vast potential in terms of bioactivity of these
marine derived antioxidant peptides has led to an emphasis on
this field of research. Numerous studies have reported antioxidant
activity of peptides derived from protein hydrolysates prepared
from various fish sources such as capelin [11], yellowfin sole [12],

ghts reserved.
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laska Pollack [13], hoki [14], conger eel [15], scad muscle [16] and
ackerel [8].
The sand eel, Hypoptychus dybowskii was most representative

f the fish species in East Sea. In Korea, it is a traditional food that
s a good source of calcium, essential amino acids, n-3 polyunsat-
rated fatty acids, and vitamins. Although there are many reports
n the health-related activities of fish muscle hydrolysates to the
evel of peptide identification, no studies thus far have reported the
haracteristics of sand eel hydrolysates.

In the present study, we investigated the radical scavenging
ctivity of enzymatically prepared sand eel protein hydrolysate
nd isolated a potent antioxidant peptide. Moreover, the protec-
ive effect of the purified peptide against DNA oxidation induced
y the hydroxyl radical was tested.

. Materials and methods

.1. Materials

The sand eel, H. dybowskii was purchased in the local market in Gangneung,
orea. The sand eel whole body was grinded, and stored at −80 ◦C until used. Various
nzymes, such as �-chymotrypsin (from bovine pancrease, type II), papain, pepsin,
rypsin (from bovine pancrease, type II) were purchased from Sigma Chemical Co.
St. Louis, MO). Alcalase and neutrase were purchased from Novo Co. (Novo Nordisk,
agsvaerd, Denmark). 1,1-diphenyl-2-picryl-hydrazyl (DPPH) was also purchased

rom Wako Chemical Co. All other reagents used in this study were reagent grade
hemicals.

.2. Preparation of sand eel hydrolysates

To prepare sand eel hydrolysates, enzymatic hydrolysis was performed using
arious enzymes (Alcalase, �-chymotrypsin, neutrase, papain, pepsin, and trypsin)
t their optimal conditions. The sand eel was hydrolyzed separately using various
nzymes with a substrate to enzyme ratio of 1:100 for 12 h, under optimum pH
nd temperature conditions. After the reaction, enzyme activity was terminated by
oiling at 100 ◦C for 10 min. An aliquot from each hydrolysate was centrifuged at
000 rpm for 15 min and the supernatant was lyophilized for antioxidant activity
nalysis. Yield of hydrolysate from sand eel was calculated as follows:

ield (%) = weight of the sand eel hydrolysates
weight of the sand eel

× 100

.3. Determination of DPPH radical scavenging activity

DPPH radical scavenging activity (RSA) was estimated using the method of
en and Hsieh [17] with slight modification. The sample (40 �l) was mixed with
20 �l of methanol and then added to 40 �l of 0.15 mM DPPH in methanol. The
ixture was allowed to stand at room temperature in the dark for 30 min. The

bsorbance of the mixture was measured at 517 nm using a spectrophotometer
JASCO, Japan). The control was conducted in the same manner where methanol
as used instead of sample. DPPH radical scavenging activity was calculated as fol-

ows: RSA (%) = (Acontrol − Asample)/Acontrol × 100, where Asample is the absorbance of
ample and Acontrol is the absorbance of the control. The EC50 value was defined as
n effective concentration of peptide that is required to scavenge 50% of radical
ctivity.

.4. Purification of antioxidative peptides

The antioxidative hydrolysate obtained from sand eel was dissolved in distilled
ater and loaded onto a Sephadex G-25 gel filtration column (2.5 cm × 70 cm) which
ad been previously equilibrated with distilled water. The column was then eluted
ith the distilled water at a flow rate of 1.5 ml/min (fraction volume 7.5 ml), while

eparated fractions showing antioxidative activity were pooled and lyophilized.
he antioxidative fraction was separated by reversed-phase HPLC on a Grom-sil
20 ODS-5 ST column (5 �m, 10 mm × 250 mm) using a linear gradient of acetoni-
rile (0–50%, v/v, 50 min) containing 0.1% trifluoroacetic acid (TFA) at a flow rate of
.0 ml/min.

.5. Determination of molecular weight and amino acid sequence

Molecular weight and amino acid sequence of purified peptide from sand eel

rotein were determined by Q-TOF mass spectrometry (Micromass, Altrincham,
K) coupled with electrospray ionization (ESI) source. The purified peptide dis-

olved in methanol/water (1:1, v/v) was infused into the ESI source and molecular
ass was determined by doubly charged (M + 2H)2+ state in the mass spectrum. Fol-

owing molecular mass determination, the peptide was automatically selected for
ragmentation and sequence information was obtained by tandem MS analysis.
Enzymes

Fig. 1. DPPH radical scavenging activity (RSA) of sand eel hydrolysates prepared by
various enzymes. Scavenging activity was measured at a concentration of 1.0 mg/ml.

2.6. Protection potential of induced DNA damage by hydroxyl radical

To evaluate the protective effects of the hydrolysate against DNA damage caused
by hydroxyl radicals, a reaction was induced by placing the following reagents in
an Eppendorf tube: 5 �l of genomic DNA (RAW 264.7 cell line), 2 mM FeSO4, and
various concentrations of the purified peptide. The mixture was then incubated at
37 ◦C for 30 min, followed by the addition of 4 �l of 10 mM H2O2 [18]. Next, the
mixture was subjected to 1.0% agarose gel electrophoresis, after which the DNA
bands were stained with ethidium bromide.

2.7. Statistical analysis

All experiments were performed in triplicate. All results were expressed as
means ± standard errors of measurement.

3. Results and discussion

3.1. The sand eel protein hydrolysates and their antioxidant
activity

The sand eel protein was hydrolyzed with Alcalase, �-
chymotrypsin, neutrase, papain, peptide and trypsin in a batch
reactor. The yield obtained were 79.95%, 73.38%, and 71.93% for
trypsin, papain, and neutrase, respectively (data not shown). The
antioxidant activity of the hydrolysates was evaluated using a
DPPH radical, the strongest free radical scavenging. Among the
hydrolysates resulting from various enzymes, the highest antiox-
idative activity was observed in the papain hydrolysate, and the
activity was 77.4% at 1.0 mg/ml (Fig. 1). However, DPPH radical
scavenging activity of papain hydrolysate was lower than that
of synthetic antioxidants BHA and BHT. Antioxidant peptides are
obtained by enzymatic hydrolysis of various proteins derived from
marine organisms. Je et al. [19] reported that tuna backbone
protein was separately hydrolyzed by six enzymes (alcalase, �-
chymotrypsin, neutrase, papain, pepsin, and trypsin) for production
of antioxidative peptides. Similarly, papain hydrolysate from tuna
backbone had antioxidant activity.

3.2. Purification of antioxidant peptide

Considering the antioxidative effect on DPPH free radical
scavenging activity, papain hydrolysate was employed for the
purification and identification of antioxidant peptide. Initially, the
papain hydrolysate was dissolved in distillated water and loaded

on a Sephadex G-25 column using open column equipment and
fractionated according to molecular weight using chromatogra-
phy. Sephadex G-25 gel chromatography is a method that makes
possible the separation of substances with different molecular
dimensions, and it has been used for desalting protein solutions,
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rotein separation from low molecular weight substances. It has
lso been applied for group separation of protein hydrolysates and
iological extracts. As shown in Fig. 2, three fractions were isolated,
mong which, fraction F3 was identified to have the highest DPPH
adical scavenging activity. The fraction F3 from Sepahadex G-25
as separated by reversed-phase HPLC using an ODS column and
ractionated to six fractions (A–F) (Fig. 3(A)). The purified fraction A
n HPLC possessed the highest antioxidant activity among the frac-
ions. Next, fraction A was purified by reversed-phase HPLC using
he C18 analytical column. Finally, three fractions (A1–A3) were
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obtained, and fraction A−1 had the higher antioxidative activity
and its EC50 value was 24.39 �g/ml (Fig. 3(B)).

3.3. Characterization of purified antioxidant peptide

The purified fraction A−1 was analyzed by ESI–MS for molecu-
lar mass determination and ESI–MS/MS for the characterization of
peptide. Amino sequences of the purified peptide was identified as
Ile–Val–Gly–Gly–Phe–Pro–His–Tyr–Leu (M.W.; 1189 Da), and the
EC50 value of the purified antioxidant peptide was 22.75 �M (Fig. 4).
During hydrolysis, peptide bond cleavage allows the release of
active peptides capable of sequestering oxygen radicals, chelat-
ing prooxidant metal ions and inhibiting lipid peroxidation in food
systems [20]. The results further confirm the general finding that
short peptides with 2–10 amino acids exhibit greater antioxidant
activity and other bioactive properties than their parent native pro-
teins or large polypeptides [21]. This indicated that it is possible to
obtain antioxidative peptide from sand eel by enzymatic hydrol-
ysis. Bougatef et al. [22] reported that antioxidant peptides were
exhibited from sardinelle, such as Leu–Ala–Arg–Leu, Gly–Gly–Glu,
Leu–His–Tyr and Gly–Ala–Leu–Ala–Ala–His. DPPH radical scaveng-
ing activity was 51 ± 1.31%, 38 ± 1.27%, 63 ± 1.5%, and 54 ± 1.38%,
respectively. The antioxidant peptides from sardinelle displayed
strong radical scavenging activity, which may be due to the pres-
ence of both histidine and tyrosine residues in this sequence [22].
In our results, we speculate that the His–Tyr sequence plays an
important role in radical scavenging potency. Li et al. [21] reported
that the antioxidative activity of histidine containing peptides was
attributed to the proton-donation ability of the histidine imida-
zole group [22]. As well, histidine and proline participate in the
antioxidative activity of designed peptides tests, among which
Pro–His–His exhibited the greatest antioxidative activity [23].
Dávalos et al. [24] reported that among the amino acids, tyrosine,
tryptophan and methionine showed the highest antioxidant activ-
dant activity of histidine containing peptides has been attributed to
the chelating and lipid radical-trapping ability of the imidazole ring
[25,26]. The amino acids of purified antioxidant peptide from sand
eel had exists histidine, phenylalanine, tyrosine and phenylalanine.
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Fig. 4. Amino acid sequence of fraction A−1 of peptide purified from sand eel
517.4ES + 2/expected mass 1189).
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ample, H2O2, and FeSO4.

.4. Prevention of the purified peptide on oxidation-induced DNA
amage

As shown in Fig. 5, the purified peptide had a protective
ffect against DNA oxidation induced by hydroxyl radical with
ncreasing peptide concentrations ranging from 158 to 625 �M.
hese results indicated that purified peptides exerted adequate
rotective effects on radical-mediated DNA damage. Our results
learly explain that purified peptide can prevent oxidative dam-
ge to DNA when DNA was exposed to OH radical generated by
e(II)/H2O2. Fe2+-catalyzed conversion of H2O2 is a major route to
he synthesis of OH radical in physical systems. The OH radical
ighly reacted with all components of the DNA molecule, lead-

ng to damage of both the purine and pyrimidine base, and also

eoxyribose backbone lesion for DNA [27]. DNA is another sen-
itive bio-target for ROS-mediated oxidative damage [28]. DNA
amage by ROS is known to initiate carcinogenesis or affect the
athogenesis for neurodegenerative diseases such as Parkinson’s
isease and Alzheimer’s disease; among ROS, the hydroxyl radical is

[

[

MS/MS spectrum from nanoflow-ESI/QTOF–MS fragment ion (observed mass

recognized as a DNA-damaging agent of physiological significance
[29].

4. Conclusion

The sand eel is the most abundant of the fish species in East
Sea. In this study, sand eel protein was hydrolysed using enzy-
matic hydrolysis with various enzymes, and antioxidant activity
peptide was determined and peptides were purified using chro-
matography. Finally, antioxidant peptide with nine-amino acids
from papain hydrolysate of sand eel protein was purified. We sug-
gest that hydrolysate from sand eel protein could be used as natural
antioxidant to enhancing antioxidant properties of functional foods
and to preventing oxidation reactions in food processing. In addi-
tion, it is expected that this will contribute to a developing interest
in basic research in the potential application of bioactive peptides.
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