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Abstract
The inadequate management of fish processing waste or by-products is one of the major problems that fish industry has to face
nowadays. Themismanagement of this rawmaterial leads to economic loss and environmental problems. The demand for the use
of these by-products has led to the development of several processes in order to recover biomolecules from fish by-products. An
efficient way to add value to fish waste protein is protein hydrolysis. Protein hydrolysates improve the functional properties and
allow the release of peptides of different sizes with several bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-
inflammatory, or antihyperglycemic among others. This paper reviews different methods for the production of protein hydroly-
sates as well as current research about several fish by-products protein hydrolysates bioactive properties, aiming the dual
objective: adding value to these underutilized by-products and minimizing their negative impact on the environment.
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Introduction

Many countries worldwide have the fish industry as a pillar of
their economy with an annual production of approximate-
ly140 million tons, of which about 80% is destined for human
consumption (Benhabiles et al. 2012). It has been estimated
that 1 billon people depend directly or indirectly on the trade
and fish production (Oosterveer 2008). Nevertheless, fish
trade presents underutilized fish by-products which include
head, skin, trimmings, fins, frames, viscera, and roe that ac-
count for more than 60% of total biomass. Fish processing
by-products are fish material left over from the primary

processing of fish manufacturing process (He et al. 2013).
In most cases, these fish by-products are discarded without
intention of recovery (Halim et al. 2016). Moreover, dis-
cards of fish by-products have a great ecological impact and
also considerably affect the economic viability of the fish-
ing and aquaculture sector. The European Commission is
carrying out modifications in the common fishery policy in
order to the complete elimination of discards. Technical
solutions are required to use fish by-products as raw mate-
rials for the production of added-value compounds
(Morales-Medina et al. 2016).

Fish processing by-products are a great source of high qual-
ity compounds that may be used for human consumption.
These by-products can be a great source of value added prod-
ucts such as proteins, amino acids, collagen, gelatin, oils, and
enzymes (Ghaly et al. 2013). Moreover, up to 10–20% (w/w)
of total fish protein can be found in fish by-products. In addi-
tion, the crude protein content of fish by-products varies from
8 to 35% (Sila and Bougatef 2016). The essential amino acids
and bioactive peptides found in fish proteins have great po-
tential for their use in the production of drugs and functional
foods (Sila and Bougatef 2016). In order to recovery protein
and peptides from fish by-products several methods such as
acid or alkaline hydrolysis, autolysis and enzymatic hydroly-
sis have been developed. Non-hydrolyzed fish proteins do not
possess these properties due to the poor accessibility to the
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functional peptide sequence (Ghaly et al. 2013; Kim and
Wijesekara 2010).

Enzymatic hydrolysis is a process carried out under mod-
erate conditions of pH and temperature. Furthermore, it is a
specific process with an easy control of the degree of hydro-
lysis as well as allows retaining the nutritional value of the
source protein. In this process, several proteolytic enzymes are
commonly used to hydrolyze the proteins and converting
them into high added-value products with functional, biolog-
ical, and nutritional properties (Kristinsson and Rasco 2000;
Shahidi et al. 1995). Protein hydrolysates are proteins broken
into peptides that contain between 2 and 20 amino acids. In
this process, the source not only maintains a high content of
essential amino acids but also generate other activities with
potential use as food additives (García-Moreno et al. 2014;
Pasupuleti and Braun 2010) such as antioxidant, antihyperten-
sive, antithrombotic, immunomodulatory, antimicrobial,
among others (Kim andWijesekara 2010). Several proteolytic
enzymes are commonly used to hydrolyze proteins by-
products which include Alcalase, papain, pepsin, trypsin, al-
pha-chymotrypsin, pancreatin, Flavourzyme, Pronase,
Neutrase, Protamex, bromelain, cryotin F, protease N, prote-
ase A, Orientase, thermolysin, and Validase (Hsu 2010; Je
et al. 2007; Ngo et al. 2010; Raghavan and Kristinsson
2008). In order to obtain bioactive peptides with functional
properties, it is essential to control the hydrolysis time as well
as to establish ideal values of pH and temperature to optimize
enzyme activity.

The molecular weights and sizes of the peptides have a
significant impact on their bioactive properties. Therefore,
the purification and characterization of the peptides resulting
from protein hydrolysis is a common practice nowadays in
order to study the properties of the hydrolyzed product
(Halim et al. 2016). Due to the molecular complexity of pro-
tein hydrolysates, it is difficult to use similar methods to those
applied in the purification of other organic compounds such as
crystallization. The high performance liquid chromatography
(HPLC) is widely used for the separation, purification and
identification of bioactive peptides. Moreover, reversed phase
chromatography allows rapid separation and detection of pep-
tide fractions while normal phase chromatography is used for
the separation of hydrophilic peptides. Furthermore, the ion
exchange chromatography can separate peptides based on
their charge; while the gel filtration chromatography (in aque-
ous systems) and gel permeation chromatography (in non-
aqueous systems) allows a separation based on the molecular
weight. However, industrial production of purified peptides is
hampered by low production yields. On the other hand, the
industry has in consideration the purification of peptides for
having lower production costs when compared with chemical
synthesis of peptides (Agyei and Danquah 2011).

Recently, several authors have purified fish by-product hy-
drolysates and have reported sequences of peptides with

different bioactivities such as antioxidant (Ahn et al. 2014;
Cai et al. 2015; Chi et al. 2015a, b), antihypertensive activity
(Intarasirisawat et al. 2013), antibacterial activity (Ennaas
et al. 2015), cholecystokinin release activity (Cudennec et al.
2008), and antiproliferative (Picot et al. 2006). Therefore, fish
processing by-products can be used as a source for produc-
ing nutraceuticals and food additives for functional foods
for human consumption. The present paper provides an
overview about specific characteristics, production, and
purification as well as current and future trends of fish
and shellfish by-product protein hydrolysates and bioac-
tive peptides. Recent research of bioactive functionalities
will be also briefly discussed.

Fish Protein Hydrolysate Production Methods

Today, the production of protein hydrolysates is massive
worldwide. The most widely used methods for the production
of protein hydrolysates in industrial practices are chemical and
biological methods. Chemical methods involve acid and alka-
line hydrolysis. Since these are methods relatively inexpen-
sive and easy to operate, they have been the preferred practices
to produce protein hydrolysates at industrial scale. However,
chemical hydrolysis is difficult to control due to its harsh
reaction and unspecific peptide bonds cleaving, giving a het-
erogeneous yield of peptides and reduces the nutritional qual-
ity of products (Celus et al. 2007). On the other hand, bio-
chemical methods include autolysis and enzymatic hydrolysis.
Autolysis process involves the action of endogenous proteo-
lytic enzymes (endo- and exo-proteases) on the animal pro-
teins. The main limitation of the production of bioactive pep-
tides or added value products by autolytic hydrolysis is the
reduced functionality and the difficulty to obtaining a homog-
enous hydrolysate. However, some authors have also pro-
duced protein hydrolysates via thermal hydrolysis by retorting
the raw material in an autoclave at 121 °C (Wang et al. 2013)
or by bacterial fermentation (Jemil et al. 2014). Figure 1 sum-
marizes hydrolysis production methods.

Enzymatic Hydrolysis

The hydrolysis of proteins by exogenous enzymes or enzy-
matic hydrolysis allows a better control of the hydrolysis pro-
cess and the resulting product. Therefore, enzymatic hydroly-
sis is considered as the most effective way to obtain protein
hydrolysates with bioactive properties (Clemente 2000;
Shahidi et al. 1995). Any hydrolysis process involves at least
five independent variables: (i) protein substrate concentration,
(ii) enzyme-substrate ratio (E/S), (iii) pH, (iv) temperature,
and (v) time (Adler-Nissen 1984). Generally, there is an opti-
mum combination of both pH and temperature, where the
enzyme shows the highest activity. Physicochemical
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conditions of the hydrolysis reaction such as temperature, pH
and enzyme/substrate ratio must be adjusted to optimize the
activity of the proteolytic enzyme (Kim and Wijesekara 2010;
Santos et al. 2011). At the beginning of hydrolysis process, the
mixture is often heated to about 85–95 °C for 5–20 min in
order to terminate the endogenous enzyme activity respective-
ly. Some Industrial food-grade proteinases derived from mi-
croorganisms have been used to produce bioactive peptides by
enzymatic hydrolysis such as Alcalase®, Flavourzyme®, and
Protamex®, as well as enzymes from plants such as papain or
bromelain and animal sources such as pepsin and trypsin
(Samaranayaka and Li-Chan 2011).

Protease specificity affects the size, the amount, the com-
position of free amino acid and peptides and their amino acid
sequence which influences the bioactivity of the obtained hy-
drolysate (Sarmadi and Ismail 2010). The degree of hydrolysis
(DH) is a fundamental parameter for the characterization and
the production and of protein hydrolysates. It is defined as the
percentage of broken peptide bonds in relation to the original
protein. The degree of hydrolysis achieved in the hydrolysis is
determined by the conditions used in the process such as sub-
strate concentration, enzyme/substrate ratio, incubation time
as well as the physicochemical conditions such as pH and
temperature. Moreover, another factor that will determine
the degree of hydrolysis is the nature of the enzyme, charac-
terized by its specific activity and type of activity. Thus, the
nature of the enzyme used will not only influence the degree
of hydrolysis but also in the type of peptides produced (Wang
et al. 2013). The higher the DH, more number of peptides
would be produced in the solution that will result in an in-
crease of protein solubility and the possibility to recover the
protein to be used as a food additive (Sheriff et al. 2014).

When the desired DH is attained, it is necessary to termi-
nate the enzymatic reaction by heating the slurry to 85–95 °C
for 5–20 min or by acidifying the hydrolysate mixture to an
extreme acidic pH value to inactivate the enzyme activity, this
step is often used for the preparation of antimicrobial peptides.
In industry, the production process of protein hydrolysates can
be coupled to membrane technology, reducing the cost asso-
ciated with enzyme inactivation at the end of the hydrolysis
process (Guerard 2007). Subsequently, it is necessary to sep-
arate the different fractions (sludge of solids and non-soluble
proteins at the bottom, aqueous layer at the middle and lipid

phase at the top) by centrifugation. The oil phase over the
aqueous phase is removed and the soluble fraction collected
(Kristinsson and Rasco 2000). Commonly, after this step, the
hydrolysates are dried by spray- or freeze-drying and stored
until further analysis or application.

Bioactive Properties of Fish By-products’
Protein Hydrolysates

Bioactive or biologically active peptides have been defined as
Bfood derived components (naturally occurring or enzymati-
cally generated) that, in addition to their nutritional value exert
a physiological effect in the body^ (Vermeirssen et al. 2004).
Moreover, protein hydrolysates and peptides from waste pro-
cessing fish by-products can promote human health and may
help in the prevention of chronic diseases (Kim and
Wijesekara 2010). In order to promote the biological activity
of peptides, which are inactive in the structure of the native
protein, they must be liberated by proteolysis (digestion
in vivo) or hydrolysis (in vitro by enzymes). Thus, the
resulting peptides may possess biological activities such as
antioxidant, antimicrobial, antihypertensive, anti-inflammato-
ry, and antidiabetic potential activity against cancer, among
others. In this section, we will provide a review of studies on
hydrolyzed fish products having bioactive properties.

Antioxidant Activity

The paradox of the oxygen is the fact that oxygen is essential
for energy production in most of living organisms but at the
same time, reactive oxygen species (ROS) are continuously
generated in cellular metabolism. High ROS concentrations
can be extremely deleterious to cell constituents (Amado
et al. 2009). Oxidative damage is caused by the depletion of
antioxidants in the body due to the formation of ROS by
physiological processes or by exogenous molecules
(Shackelford et al. 2000; Valavanidis et al. 2006). Organisms
protect themselves from such harmful effects with a complex
antioxidant defense system that include a number of enzymat-
ic and non-enzymatic defenses (Monserrat et al. 2008). In this
regard, the oxidative stress starts when the formation of ROS
exceeds the antioxidant defenses capacity (Amado et al. 2009;
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Jones 2006). In fact, the oxidative stress is related to a number
of deleterious processes, such as protein damage, lipid perox-
idation, enzyme inactivation and DNA breakage. These pro-
cesses favor the occurrence of various diseases or pathologies
such as the formation of tumors or cancer, heart disease, rheu-
matoid arthritis and aging (Sohal 2002; Klaunig and
Kamendulis 2004).

Lipid oxidation mediated by free radicals, oxidative stress,
and antioxidants has been widely discussed in many research
areas (Sila and Bougatef 2016). Although synthetic antioxi-
dants as butylated hydroxy-anisole (BHA) and butylated hy-
droxytoluene (BHT) show stronger antioxidant activities than
natural antioxidant, asα-tocopherol, ascorbic acid, are used in
foods to prevent deterioration. However, the use of these syn-
thetic compounds has begun to be restricted due to their po-
tential health hazards and toxicity (Centenaro et al. 2014;
Sabeena Farvin et al. 2014). Protein hydrolysates and peptides
from fish by-products have shown antioxidant activities and
they can be considered as potential substitutes of synthetic
antioxidants to reduce oxidative processes as well as ingredi-
ents for producing functional foods (Chi et al. 2015a; Frankel
and Meyer 2000; Wiriyaphan et al. 2012).

Some authors reported that the hydrophobic amino acids as
alanine, phenylalanine, isoleucine, leucine, valine and glycine
and proline, methionine, tyrosine, histidine, lysine and cyste-
ine may improve the efficiency of antioxidant peptides. These
amino acids can act as proton donors or electron and/or as
lipid radicals scavengers (Je et al. 2007; Samaranayaka and
Li-Chan 2011; Sarmadi and Ismail 2010). In the same way, it
has been demonstrated that acidic amino acids such as
glutamic acid and aspartic acid as well as basic amino acids
such as arginine, lysine and histidine present antioxidant ca-
pacity as chelator of metal ions due to carboxyl and amino
groups in the side chains (Sarmadi and Ismail 2010;
Udenigwe and Aluko 2012). Also, amino acids with aromatic
residues can act as proton donors to radicals with electron
deficiency (Sarmadi and Ismail 2010).

Several recent works have proved the antioxidant activity
of fish by-product protein hydrolysates (Table 1). Lassoued
et al. (2015) hydrolyzed thornback ray (Raja clavata) skin
gelatin with four different proteases to obtain peptides with
antioxidant activity (proteolytic proteases from Bacillus
subtilis A26, Raja clavata crude alkaline protease extract,
Alcalase and Neutrase). Results showed that the highest anti-
oxidant activity was obtained with protein hydrolysates gen-
erated by bacillus A26 proteases. Further, the authors purified
the pentapeptide Ala-Val-Gly-Ala-Thr which showed the
highest antioxidant activity using the DPPH (2,2-Diphenyl-
1-Picrylhydrazyl) radical-scavenging assay. The octapeptide
Phe-Leu-Asn-Glu-Phe-Leu-His-Val isolated from salmon
by-product protein hydrolysate exhibited DPPH and ABTS
(2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) rad-
ical scavenging activity and strong ferric reducing activity

(Ahn et al. 2014). In a recent study Chi et al. (2015b) hydro-
lyzed skin from Bluefin leather jacket (Navodon
septentrionalis) processing by-product with several proteolyt-
ic enzymes. The hydrolysate produced with the enzyme
Alcalase showed the highest antioxidant activity against
DPPH˙, HO˙, and O2˙− radicals. In the same study, the anti-
oxidant peptides Gly-Ser-Gly-Gly-Leu, Gly-Pro-Gly-Gly-
Phe-Ile, and Phe-Ile-Gly-Pro were purified. The authors as-
sumed that the isolated peptides could exert the antioxidant
activities due to the hydrophobic nature and/or the aromatic
residues of some amino acids contained in the peptidic chains.
Recently, Pan et al. (2016) isolated three bioactive
hexapeptides (Phe-Ile-Met-Gly-Pro-Tyr, Gly-Pro-Ala-Gly-
Asp-Tyr and Ile-Val-Ala-Gly-Pro-Gln) from Raja porosa car-
tilage that demonstrated good scavenging activities against
DPPH·, HO·, O2

·− and ABTS·+ due to their small molecular
structure and the presence of hydrophobic amino acid residues
within the peptide sequences..

Antimicrobial Activity

Currently, the research focusing on the characterization and
isolation of antimicrobial peptides from fish processing by-
products is lower when compared to research on antioxidant
peptides (Di Bernardini et al. 2012). Antimicrobial peptides
are chains of amino acids with a molecular weight below
10 kDa that usually contain less than 50 amino acids of which
nearly a half are hydrophobic (Najafian and Babji 2012).
Moreover, through modification of the net charge or the hy-
drophobicity ratio, the antibacterial activity of cationic pep-
tides can be modulated (Sila et al. 2014). The interaction of
these peptides with the bacterial membrane could form pores
or block the membrane ion gradients leading to the destruction
of the cell constituents. Moreover, several peptides could also
generate bacterial depletion without membrane lysis probably
by modifying the cellular metabolism (Wald et al. 2016).
However, the mechanism through the peptides exert antibac-
terial activity is not yet completely understood.

Almost all antimicrobial peptides from fish possess anti-
bacterial activities against numerous Gram-negative and
Gram-positive strains. These antimicrobial peptides are poten-
tial candidates for new antibiotic development in the pharma-
ceutical field as well as antimicrobial agents for the food in-
dustry. In this manner, these antimicrobial peptides may be
used as antibacterial, antiviral, antifungal, immunomodulato-
ry, and antitumor agents (Kim and Wijesekara 2010;
Rajanbabu and Chen 2011).

Table 2 shows recently published works that reported fish
by-product protein hydrolysates with antimicrobial activity.
Ennaas et al. (2015) hydrolyzed mackerel by-products using
Protamex, Neutrase, papain, and Flavourzyme as proteolytic
enzymes. These hydrolysates showed antibacterial activity
against Gram-positive (L. innocua) and Gram-negative
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(E. coli) strains. The highest antibacterial activity of these
hydrolysates was showed when they were fractionated with
acetone, which suggests the hydrophobic nature of these bio-
active peptides. In the other hand, Trout pepsin was used to
produce antibacterial trout by-products protein hydrolysates
against food contaminants and fish farming pathogens (Wald
et al. 2016). Hydrolysates with hydrolysis degree of 30%
showed the highest activity against Flavobacterium
psychrophilum and Salmoninarum renibacterium. Moreover,
the amino acids lysine, leucine, alanine, arginine, glycine,
aspartic acid, and glutamic acid were the most abundant in
this hydrolysate. Furthermore, head, frames, and viscera from
tilapia were submitted to enzymatic hydrolysis using
Protamex enzyme by Robert et al. (2015). These hydrolysates
possessed well-balanced amino acid profile and showed anti-
microbial activity against Edwardsiella tarda and Bacillus
megaterium.

Antihypertensive Activity

As reported by World Health Organization (WHO 2010),
about 30% of the deaths in the world are owed to cardiovas-
cular diseases and it is estimated that by 2020 stroke and heart
disease will be the major cause of death worldwide.
Antihypertensive peptides act in the reduction of arterial blood
pressure by inhibiting the action of Angiotensin-I converting
enzyme (ACE). This enzyme is able to catalyze the conver-
sion of angiotensin I to the active vasoconstrictor angiotensin
II as well as to inactivate a vasodilator (bradykinin), thus
resulting in an increase in blood pressure (Lee and Hur
2017). Therefore, inhibition of ACE has become the main
target in the treatment of hypertension (Himaya et al. 2012).
Although several synthetic ACE inhibitors such as enalapril,
alacepril, or lisinopril have an effective result against hyper-
tension, it is reported that they have side effects including
inflammatory response, dry cough, taste disturbance, skin
eruptions or angioneurotic oedema (Intarasirisawat et al.
2013). Hence, food-derived ACE inhibitory peptides are be-
ing considered as an alternative.

The relationship between structure and activity of food-
derived ACE inhibitory peptides has not been fully
established. However, ACE inhibitory peptides generally con-
tain zinc-binding ligands, a hydrogen-bond donor and carbox-
yl terminal group (Andrews et al. 1985). Also, ACE activity
could be inactivated by the presence of hydrophobic amino
acids at the C-terminal tail by the alteration of the catalytic site
of ACE (Kang et al. 2003). Peptides containing branched-
chain aliphatic amino acids at N-terminal end are also sug-
gested to have strong activity as ACE inhibitors (Wijesekara
and Kim 2010).

Recently, several studies have highlighted ACE inhibitor
activity of fish by-products protein hydrolysates.
Intarasirisawat et al. (2013) hydrolyzed skipjackT
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(Katsuwonus pelamis) roe with Alcalase to 5% DH. They
purified the hydrolysate by ultrafiltration, cation exchange
column chromatography, and reverse phase high performance
liquid chromatography (RP-HPLC). The hexapeptide Met-
Leu-Val-Phe-Ala-Val showed the highest ACE inhibitory ac-
tivity. Although the ACE inhibitory capacity of this
hexapeptide was weaker than the commercial synthetic ACE
inhibitors, the authors assumed that it could be potentially
used as a functional food ingredient against hypertension
symptom. In other study, ACE inhibitory capacity of protein
hydrolysates from salmon pectoral fin was evaluated (Ahn
et al. 2012b). Salmon by-product proteins were hydrolyzed
using Alcalase, Flavourzyme, Neutrase, pepsin, Protamex,
and trypsin. The hydrolysates produced with the enzyme
Alcalase showed the highest ACE inhibitory activity. The au-
thors identified three peptides (Val-Trp-Asp-Pro-Pro-Lys-Phe-
Asp, Phe-Glu-Asp-Tyr-Val-Pro-Leu-Ser-Cys-Phe and Phe-
Asn-Val-Pro-Leu-Tyr-Glu). They supposed that the presence
of Phe, Leu, and Tyr residues at the C-terminal play an impor-
tant role in their ACE inhibition activity. Salmon skin is a
normally discarded by-product in the Atlantic salmon indus-
try. Gu et al. (2011) hydrolyzed Atlantic salmon skin protein
using Alcalase and Papain in a two-step hydrolysis process.
Two dipeptides, Ala-Pro and Val-Arg, were isolated from
Atlantic salmon skin protein hydrolysates. These peptides
were found to be the major contributors to the ACE inhibitory
capacity peptides in the protein hydrolysate. Gu et al. (2011)
suggested that salmon skin collagen peptides might be useful
as functional foods and antihypertensive agents. Several other
recent studies that have produced fish by-product protein hy-
drolysates with ACE inhibitory activity are listed in Table 3.

Other Bioactivities

Some researchers have demonstrated that fish by-product pro-
tein hydrolysates possess other bioactivities with promissory
applications in the pharmaceutical field or as food additives in
functional foods. Although, some works have been published
reporting different bioactivities from fish by-product protein
hydrolysates to those commented in this section, the authors
have preferred to include those that are currently being studied
widely. At this point, even though fish by-product protein
hydrolysates have been reported to show antitumor or antipro-
liferative activities, the research in this field remains limited
compared to vegetative peptides (Suarez-Jimenez et al. 2012).
Hsu et al. (2011) produced and identified two antiproliferative
peptides active against human breast cancer cell line MCF-7
from tuna dark muscle by using papain and Protease XXIII.
The isolated amino acid sequences for both peptides were
Leu-Pro-His-Val-Leu-Thr-Pro-Glu-Ala-Gly-Ala-Thr and
Pro-Thr-Ala-Glu-Gly-Gly-Val-Tyr-Met-Val-Thr, respectively.
The authors concluded that tuna dark muscle by-product
would be a good source to produce antiproliferative peptides.
Moreover, proteins from tuna cooking juice, a by-product
produced during the processing of canned tuna hydrolysates
by using protease XXIII, have shown antiproliferative activity
(Hung et al. 2014). Tuna cooking juice hydrolysates showed
antiproliferative activities up to 25% against MCF-7 cells
without affecting normal breast epithelial cells. Two peptides
were identified as Lys-Pro-Glu-Gly-Met-Asp-Pro-Pro-Leu-
Ser-Glu-Pro-Glu-Asp-Arg-Arg-Asp-Gly-Ala-Ala-Gly-Pro-
Lys and Lys-Leu-Pro-Pro-Leu-Leu-Leu-Ala-Lys-Leu-Leu-
Met-Ser-Gly-Lys-Leu-Leu-Ala-Glu-Pro-Cys-Thr-Gly-Arg.

Table 3 Antihypertensive activity of fish by-product protein hydrolysates (works published since 2012)

Fish Source Enzyme Purified Sequences Reference

Skipjack
(Katsuwana pelamis)

Roe Alcalase DWMKGQ, MLVFAV,
MCYPAST, FVSACSVAG,
LADGVAAPA,
YVNDAATLLPR,
DLDLRKDLYAN

Intarasirisawat et al.
(2013)

Salmon (Scientific
name not specified)

Pectoral fin Alcalase, Flavourzyme, Neutrase,
pepsin, Protamex, trypsin

VWDPPKFD, FEDYVPLSCF,
FNVPLYE

Ahn et al. (2012b)

Skate (Okamejei kenojei) Skin gelatin Alcalase, flavourzyme, Neutrase,
Protamex

MVGSAPGVL, LGPLGHQ Ngo et al. (2014)

Pacific cod (Gadus
macrocephalus)

Skin gelatin Pepsin + trypsin + α-chymotrypsin LLMLDNDLPP Himaya et al. (2012)

Smooth hound
(Mustelus mustelus)

Heads and viscera M. mustellus gastric protease
extract, M. mustellus intestine
protease extract, porcine
pancreatine

– Sayari et al. (2016)

Tilapia (Oreochromis
niloticus)

Skin gelatin Bromelain, papain, trypsin,
Flavourzyme, Alcalase,
Neutrase

– Choonpicharn et al.
(2015)

Tilapia (Oreochromis
niloticus)

Frame Flavourzyme 1000 L – Chuesiang and
Sanguandeekul
(2015)
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Although the anti-proliferation activity demonstrates a cor-
relation with antioxidant activities, it seems that there is no
correlation between the peptides molecular weight and
their antiproliferative activity and more works should be
carried out to clarify this concern (Hsu et al. 2011; Hung
et al. 2014; Lee et al. 2003).

Fish by-products protein hydrolysates have also demon-
strated potential activities against several diseases or health
disorders that concern world population nowadays. Indeed,
salmon frame and tilapia skin gelatin protein hydrolysates
have shown potential applications as antihyperglycaemic
agent as potent as other antidiabetic drugs (Roblet et al.
2016; Wang et al. 2015). In their work, Wang et al. (2015)
stated that the gelatin hydrolysates of warm-water fish skin
had more potential for the production of antidiabetic drugs
as precursors of DPP-IV inhibitors than those of cold-water
fish. Li-Chan et al. (2012) identified two tetrapeptides (Gly-
Pro-Ala-Glu, Gly-Pro-Gly-Ala) obtained from Atlantic salm-
on skin gelatin hydrolyzed with Flavourzyme with high DPP-
IV inhibitory activity and could be used for the treatment or
prevention of type 2 diabetes.

In an inflammatory process, activated macrophages of the
immune system secrete nitric oxide in the inflammation sites
to repair tissue and to remove the cause of the inflammation
(Ahn et al. 2012a; Guastadisegni et al. 2002). However, var-
ious inflammatory diseases are related to the overproduction
of nitric oxide. In this way, salmon by-products were hydro-
lyzed by Ahn et al. (2012a), and the obtained hydrolysates
showed an anti-inflammatory activity by inhibiting nitric ox-
ide production and proinflammatory cytokines.

Collagen and gelatin are excellent functional ingredients
for the cosmetics industry for the manufacture of anti-
aging and anti-wrinkle products due to their excellent
moisturizing property. Traditionally, these compounds
were obtained from terrestrial animals but owing to certain
animal diseases and ethnic and religious barriers, collagen
and gelatin from fish are becoming more important as a
preference of the cosmetic industry for the preparation of
functional cosmeceuticals (Kim 2014).

Table 4 shows some recent works of fish by-products pro-
tein hydrolysates presenting antiproliferative, antidiabetic, an-
ti-inflammatory, or immunomodulatory activity.

Conclusion

In this work, we briefly reviewed some important aspects
about the production of fish by-products protein hydrolysates,
as well as some recent works testing their bioactive properties.
Fish waste is presented as an important source of proteins,
peptides and amino acids with high potential to develop novel
nutraceuticals that may replace or minimize the potential del-
eterious effects of synthetic drugs. Additionally, the use of thisTa
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technology would serve the dual purpose of developing a high
added value product from a cheap and abundant raw material
and minimizing the polluting potential of fish waste. The
knowledge about the recovery of fish by-products and their
potential bioactivities has hugely increased during the past
decades. Nevertheless, more studies are needed to lead a better
understanding of the mechanism through which fish by-
product protein hydrolysates exert their biological activities.
Moreover, further in vivo studies must be carried out to an-
swer the questions of their absorption in the gastrointestinal
track and bioavailability, in order to develop food additives
like nutraceuticals for human functional foods and natural
drugs against diverse diseases.
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