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Abstract 

This paper presents a soft computing strategy to 
determine the optimum die openings of parison 
programming of extrusion blow molding process. The 
design objective is to obtain a uniform thickness of 
blown parts. The proposed strategy, Fuzzy 
Neural-Taguchi, first establishes a back propagation 
network using Taguchi’s experimental array to predict 
the relationship between design variables and response. 
Engineering knowledge is thus applied to genetic 
algorithm using fuzzy rules to improve search efficiency. 
This study uses the finite element simulation software, 
BlowSim, to simulate the thickness distribution of blown 
parts. The comparison of results demonstrates the 
effectiveness of the proposed strategy.  

1. Introduction 

Extrusion blow molding is a low cost 
manufacturing process for complex hollow parts [1]. 
The parison extrusion produces a melten thermoplastic 
tube from melten resin. The part molds then clamp both 
ends of the parison and high-pressure air is blown into 
the cavity to inflate the hollow part. The displacement 
of the mandrel controls the gap between the mandrel 
and the die, which determines the parison thickness (Fig. 
1). The thickness of parison controls the thickness of 
inflated parts. Excessive resin usage results in material 
waste and increased cycle times. An inadequate 
thickness results in decreased mechanical strength. 
Parison programming controls the die openings of 
programming point to obtain the desired distribution of 
part thickness. 

 
Fig. 1 The control of the parison thickness using the 

parison programming 

The programming points are specified by the 
extrusion time of parison. As the example part shown in 
Fig. 2, we identify the die gap openings at 7 discrete 
extrusion times as the design variables: P(t0), P(t1), P(t2), 
P(t3), P(t4), P(t5), and P(t6). The design objective in this 
study is to obtain an inflated part of uniform wall 
thickness. Often process engineers manipulate the 
parison programming on a trial and error basis. Larger 
expansion area requires heavier wall thickness of 
parison. 
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Fig. 2 Programming points of parison extrusion 

Extrusion blow molding involves complicated 
processes including parison extrusion, clamping, blow 
up, and cooling. The investigation of the relationship 
between design variables and the wall thickness 
distribution of blown parts requires expensive 
experiments and time-consuming simulations. Diraddo 
et al. [2] established a neural network to predict the 
distribution of parison thickness and applied 
Newton-Raphson method to obtain the final blow 
molded part specifications [3]. Lee et al. [4] used a 
finite element model of thin film to simulate 
blow-molding processes, and applied the feasible 
direction method to minimize the parison volume at the 
constraints of part thickness. 

This study applies an optimization strategy based 
on Taguchi’s method [5] and soft computing [6] to the 
optimization of parison programming to obtain a 
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uniform thickness distribution of final parts. The 
proposed strategy establishes a local neural network 
based on Taguchi’s orthogonal array experiments and 
adopts the fuzzy inference to genetic algorithm to 
search for the optimum. 

2. Optimization Strategy 

Taguchi’s method has proven its efficiency and 
simplicity in parameter design. The proposed 
optimization strategy, Fuzzy Neural-Taguchi 
(FUNTGA), applies Taguchi’s experimental design to 
the training and testing of a neural network model. The 
trained network becomes the function generator of the 
design fitness in the Genetic Algorithm. The search for 
optimum using GA enhances the possibility for a better 
design than the conventional analysis of means 
(ANOM). A fuzzy inference of engineering knowledge 
is introduced to enhance the searching efficiency of GA. 
The flowchart of the optimization strategy is illustrated 
in Fig. 3. 

Orthogonal Array

Initial Design

Verification
Experiment

Neural
Network

Training

Testing

Genetic
Algorithm

Objective Constraints

Sampling Simulation Model

Fuzzy
Reliability

Verification
Experiment

Predict
Optimum

convergeNo

End

Yes

Fuzzy inference

Engineering
Knowledge

 
Fig. 3 The flowchart of Fuzzy Neural-Taguchi 

2.1. Taguchi’s Method 
Inspired by statistical factorial experiments, 

Taguchi’s method features orthogonal arrays and 
analysis of mean (ANOM) to analyze the effects of 
design variables. Each variable is assumed to have finite 
levels (set points), such as two or three levels, within 
the investigating range. The orthogonal array is a kind 
of fractional factorial experiments.  The application of 
orthogonal arrays reduces the number of experiments, 
which is particular effective for design optimization 
involving expensive experiments or time-consuming 
simulations. For instance, instead of 27 experiments for 
three 3-level full factorial experiments, the L9 
orthogonal array selects only nine treatments. ANOM 
study of the experiments reveals effects of design 
variables that are used to determine the optimal level of 

each parameter. Taguchi’s result is not optimal; however, 
iterations of Taguchi’s method can provide a near 
optimal design. 
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Fig. 4 Full factorial and fractional factorial 

experiments for three variables 

Taguchi’s approach utilizes ANOM of fractional 
factorial experiments to predict the optimal design of 
the full factorial experiments. However, the predictive 
optimal is sensitive to the selection of factorial levels 
and interaction effects. Also, the restriction of parameter 
values to factorial levels eliminates possible better 
designs between preset levels.  

2.2. Neural-Taguchi network 
Neural network technologies are effective in 

process control. The network is used to establish a 
simulation model for a complex nonlinear system. Fig. 
5 represents a back-propagation network that consists of 
an input layer, a hidden layer, and an output layer. The 
back propagation network is a type of supervised 
learning networks. Sampling data are divided into 
learning samples and testing samples. Learning samples 
are used to determine the weighting matrices, Wij and 
Wjo, among neurons. Testing samples are used to 
determine the accuracy and the generality of network. 
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Fig. 5 Back-Propagation network 

Training samples are essential to prediction quality 
of network models. This study employs Taguchi’s 
experimental design to select training samples to reduce 
the number of experiments and to maintain the 
representivity of samples [7] [9]. The steepest gradient 
method is adopted to train the weighting matrices. The 
verification experiment of the optimal design from the 
ANOM study will serve as a testing sample. The trained 
network can accurately predict the responses for the 
parameter designs between factorial levels. Significant 
interactions often introduce complexity to experimental 
design and lead to erroneous prediction of optimal 
factorial levels. The network model can resolve 
interaction effects among variables. These features 
enable the network to explore a better design as 

 2/7 



 

compared with Taguchi’s additive model. 

2.3. The search for the optimum of the 
Neural-Taguchi network 

The trained Neural-Taguchi network can predict 
responses for the parameter combinations in the 
investigating range. Generic Algorithm is thus applied 
to search for the optimum.  If the verification result of 
the predicted optimum is not satisfactory, the design 
will be used as an initial design and another set of 
orthogonal array experiments will be conducted.  The 
results will be served as additional testing data for the 
network.  The iteration process stops when the 
predicted optimum obtained from GA and the network 
converges. 

The Neural-Taguchi network replaces Taguchi’s 
additive model to predict design outputs. The search for 
the optimum in the investigating range using GA will 
explore the possibility of better designs other than 
factorial points. However, the application of orthogonal 
arrays significantly reduces the number of training 
samples as compared with conventional random 
sampling. Owing to that better prediction accuracy will 
exist around sampling points, our approach introduces a 
fuzzy inference to steer the search direction of GA. 

2.3.1. Normalization of design parameters 

To facilitate the calculation of the distance among 
designs, the values of the set points of continuous 
variable xk are normalized to zk using the following 
transformation, 
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where max(xk) represents the maximum and min(xk) 
represents the minimum values of the factorial variable 
xk. Thus the normalized factorial values of an equal 
spaced three-level continuous variable, x1, will become 
(z11, z12, z13) = (-1, 0, 1). For discrete variables, the 
factorial values are equally assigned between -1 and +1. 

2.3.2. The Reliability Distance 

The factorial distances between predictive designs, 
Di, and the sample data Sj are defined as follows, 
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where n represents the number of variables. 
 
Because that the predictions around the sampling 

points of the trained network will have higher accuracy, 
this study defines the Reliability Distance of a 
predictive design as the minimum factorial distance 
between the prediction and sampling data. 

)min( iji rRD =  (3)
Smaller RD results in higher prediction accuracy. 

Also, the distance of an interpolating design is assumed 
negative and the distance of an extrapolating design is 
assumed positive. For instance, the Reliability Distance 
of D1 in Fig. 6 is negative and the Reliability Distance 
of D2 is positive. 
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Fig. 6 The factorial distances of predicted designs 

2.3.3. The fuzzy rules of prediction accuracy 

The Reliability Distance of a predictive design 
determines the prediction accuracy of the design. The 
reliability of the predicted design decreases when the 
absolute value of RD increases. Also, the reliability of 
extrapolating designs is often much worse than the 
interpolating designs. Based on the above characteristics 
of neural network, this study propose the fuzzy rules of 
the design reliability as follows, 

R1: If RD is PB then prediction reliability is Bad 
R2: If RD is PM then prediction reliability is Poor 
R3: If RD is PS then prediction reliability is Fair 
R4: If RD is ZE then prediction reliability is 

Excellent 
R5: If RD is NS then prediction reliability is 

Excellent 
R6: If RD is NM then prediction reliability is Good 
R7: If RD is NB then prediction reliability is Fair 

Seven levels are defined to describe the condition 
variables: PB(Positive Big), PM(Positive Medium), 
PS(Positive Small), ZE(Zero), NS(Negative Small), 
Negative Medium (NM), and NB(Negative Big). Five 
levels are defined to describe the assessment results: 
Excellent, Good, Fair, Poor, and Bad. Standard 
membership functions shown in Fig. 7 and Fig. 8 are 
used. 

PS PM PBNB NM NS

Interpolation Extrapolation
0.33  0.65 0.97-0.97 -0.65 -0.33 0

ZE 1.0

RD

 
Fig. 7 Membership functions of condition variables 
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Fig. 8 Membership functions of assessment 

variables 
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3. Optimization of blow molding 
parameters 

This study applies the proposed optimization 
strategy to the parameter design of extrusion blow 
moldings. The example part is a HDPE bottle. The 
design objective is to obtain a uniform wall thickness of 
2mm. BlowSim is applied to obtain the distribution of 
the wall thickness of blow-molded parts. BlowSim is a 
finite element software package designed to simulate 
parison meshing, blow molding, and thermoforming 
processes [8]. This software has been developing at the 
Industrial Materials Institute (IMI) of National Research 
Council (NRC), Canada. The application procedure is 
described in this section, and the results are compared 
with Taguchi’s method and heuristic control to show the 
effective of our approach. 

3.1. Taguchi’s parameter design 

3.1.1. Experimental Design 

As stated in Fig. 2, the die gap openings at 7 
discrete extrusion times are selected as the control 
factors: Pi(t0), Pi(t1), Pi(t2), Pi(t3), Pi(t4), Pi(t5), and Pi(t6). 
The design optimization manipulates the die openings at 
the programming points to obtain uniform thickness of 
final inflated parts. 

Because large errors are expected for extrapolation 
of the neural network, the selection of the factorial 
range should cover the optimum design to increase 
prediction accuracy. The required parison thickness 
mainly depends on the inflation ratio although the 
parison might expand annularly and longitudinally. The 
inflation ratio is defined as the ratio between the parison 
diameter and the inflated part diameter. We assume that 
the parison thickness is determined by the die gap 
opening despite the complexity of parison extrusion. 
The cross section areas of the parison and the final part 
will be then approximately equal, which provides the 
initial design of die opening. The relationship between 
parison thickness and inflated part thickness are 
approximately as follows, 

ff td ⋅⋅π ＝  )( 2
ppp ttd −π (4)

dp：outside diameter of parison (mm) 
df：final part diameter(mm) 
tf：final part thickness(mm) 

The L18 orthogonal array is selected as the 
experimental design that is stated in Table 1. The 
openings at each programming are assumed three levels 
with the initial design at the middle. The range between 
the upper and the lower levels is the design space. The 
ranges are tentatively set to be 30% for the middle and 
10% for both ends of the programming points. The basic 
idea is to cover the optimum design in the parameter 
ranges. 

 
 

3.1.2. Objective Function 

A quality blow molding part requires on-target and 
uniformly distributed wall thickness. The proposed 
objective function is defined as the average quality loss 
due to the deviation of thickness, 
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where ti  stands for the thickness of node i; T stands for 
the target thickness; n stands for the number of nodes of 
the simulation model. The calculation of thickness 
distribution should exclude flash portions. 

Any deviation from the target thickness will cause 
quality loss. The average quality loss can be divided 
into two parts: the deviation of the mean from the target 
thickness and the variation of the thickness around 
mean. 
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where t  is the mean thickness and s2 is the sampling 
variance. The design optimization seeks to minimize the 
variation of thickness and the difference between the 
target and the mean thickness. The BlowSim simulation 
responses of the initial design and the L18 experiments 
are stated in Table 1. 

Table 1. L18 orthogonal array 

L18(2137) A 
P(t0) 

B 
P(t1) 

C 
P(t2)

D 
P(t3) 

E 
P(t4) 

F 
P(t5) 

G 
P(t6) 

Objective 

1 0 45 60 60 48 0 0 0.69 
2 0 60 75 75 63 5 5 0.62 
3 0 75 90 90 78 10 10 0.63 
4 5 45 60 75 63 10 10 0.93 
5 5 60 75 90 78 0 0 0.93 
6 5 75 90 60 48 5 5 0.72 
7 10 45 75 60 78 5 10 0.82 
8 10 60 90 75 48 10 0 0.79 
9 10 75 60 90 63 0 5 0.69 

10 0 45 90 90 63 5 0 1.14 
11 0 60 60 60 78 10 5 0.53 
12 0 75 75 75 48 0 10 0.62 
13 5 45 75 90 48 10 5 1.07 
14 5 60 90 60 63 0 10 0.67 
15 5 75 60 75 78 5 0 0.49 
16 10 45 90 75 78 0 5 1.01 
17 10 60 60 90 48 5 10 0.82 
18 10 75 75 60 63 10 0 0.55 

Initial 0 60 60 60 48 5 0 0.52 
Taguchi’s 
Optimum 0 75 60 60 78 10 10 0.49 

3.1.3. Parameter design 

Taguchi’s method applies the analysis of means 
(ANOM) to estimate factor effects. Fig. 9 depicts the 
effects of each die openings on the design objective. An 
additive model based on ANOM can be formulated. The 
additive model estimates the optimum treatment 
combination is A1B3C1D1E3F3G3. The BlowSim 
simulation result of the optimum (Table 1) demonstrates 
that Taguchi’s method does provide a better design than 
the initial and all the L18 experiments. However, the 
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BlowSim simulation of the optimum shows no 
significant improvement over the initial design that 
might be due to possible interactions among variables 
and strong system nonlinearity.  
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Fig. 9 Effect plot of control variables 

3.2. Design Optimization using BlowOP 
BlowOp is an optimization module of BlowSim, 

which uses engineering heuristics to adjust the die 
openings of the programming points of parison 
extrusion. The heuristics are as follows, 
1. If the thickness of a programming point is larger 

than the target thickness, then increase the 
corresponding die gap opening. 

2. If the thickness of a programming point is smaller 
than the target thickness, then reduce corresponding 
die gap opening. 

The iteration procedure is determined by the 
following equation: 

( )TTAA ipuii −−=+ αα1  (7)
where  and  are the parison thickness of each 
programming point at iterations i and i+1. The die 
opening determines the parison thickness. T  is the 
part thickness at iteration i, and T is the target thickness 
of the final part. α

iA 1+iA

i

u is the user-defined proportional gain 
and αp is the inflation gain defined by αp = Ai/Ti. 

The die opening is set at 75% at all time in the first 
iteration. Given the proportional gain αu of 0.3, BlowOp 
converges in 12 iterations. The objective and the die 
openings of the optimum obtained by BlowOp are 
stated in Table 2. 

Table 2 BlowOp’s Optimum 

 P(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6) Objective 

BlowOp 0.0 83.1 81.4 84.3 80.3 0.0 0.0 0.38 

 

3.3. Design optimization using Fuzzy 
Neural-Taguchi 

3.3.1. Establishment of neural network 

The L18 orthogonal experiments are used as 
training samples for the Back Propagation Network of 
the extrusion blow molding. The initial design and 
Taguchi’s optimum design are used as testing samples 

for the trained network. This study applies the 
Multilayer Function Link Network to enhance learning 
capability. Logarithm and exponential neurons are 
added to the input and output layers of BPN to improve 
the network’s sensitivity to small and large values. 
There are 18 neurons in the first hidden layer and 13 
neurons in the second hidden layer. The initial learning 
rate is set at 0.95 and the initial momentum term is set at 
0.5. The RMS error reduces to 0.055 after 10000 
epochs. 

3.3.2. Fuzzy rules for engineering heuristics 

The fuzzy rules for prediction accuracy can only 
reduce the prediction reliability of those designs far 
away from the sampling data, but do not provide 
positive suggestions for the directions of better designs. 
For this example case of blow molding, the engineering 
heuristics such as those used in BlowOp can be applied 
to adjust the penalty functions to improve the searching 
efficiency of GA. 

If the average thickness of the section around a 
certain programming point is larger than the target 
thickness, the die opening of the programming should 
be reduced. Similarly, if the average thickness of the 
section around a certain programming point is smaller 
than the target thickness, the die opening of the 
programming should be increased. These engineering 
heuristics will provide the reliability for a given design 
generated from GA. 

Five levels are defined to describe the condition 
variables: PB(Positive Big), PS(Positive Small), 
ZE(Zero), NS(Negative Small), and NB(Negative Big). 
Five levels are defined to describe the predictive actions 
of die opening: BI(Big Increase), SI(Small Increase), 
ZE(No adjustment), SD(Small Decrease), and BD(Big 
Decrease). Five levels are defined to describe the design 
reliability: Excellent, Good, Fair, Poor, and Bad. For 
instance,  

If  the average thickness is Positive Bigger 
than the target thickness and the die 
opening has a Big Increase  

Then  the reliability of this design is Bad. 

The Complete fuzzy rules are illustrated in Table 3. 

Table 3 Fuzzy rules between the current part 
thickness and the die opening of next iteration 
     Thickness
 
Opening 

PB PS ZE NS NB 

BI Bad Bad Bad Fair Excellent 
SI Poor Poor Fair Excellent Good 
ZE Fair Fair Excellent Fair Fair 
SD Good Excellent Fair Poor Poor 
BD Excellent Fair Bad Bad Bad 

3.3.3. Optimum search using GA 

The fitness function is defined as the negation of 
the average loss of eq. (5). The trained network will 
then be used as the function generator for each 
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chromosome combination. The crossover rate is 0.75, 
the mutation rate is 0.03, and the population size is 40 in 
this study. 

The fuzzy rules for prediction accuracy and 
engineering heuristics are applied to GA to improve the 
searching efficiency. The optimum search using GA 
converges in 300 generations. The optimum 
chromosome is presented in Table 4. 

Table 4 FUNTGA’s optimum 

 P(t0) P(t1) P(t2) P(t3) P(t4) P(t5) P(t6) Objective 

FUNTGA’s
Optimum 0 74 67.6 70.1 74.2 0 0 0.36 

3.4. Comparison of results 
Figure 10 compares the profiles of optimal die 

openings of parison programming and Table 5 compares 
the thickness distributions of the optimum obtained 
from BlowOp, Taguchi’s method, and the Fuzzy 
Neural-Taguchi strategy. Taguchi’s optimum provides a 
design with the mean thickness to target but a larger 
thickness deviation. BlowOp is quite effective and 
converges in 12 iterations. BlowOp’s result has a much 
smaller objective function value than Taguchi’s 
optimum. However, FUNTGA outperforms BlowOp at 
the cost of more simulations. Although the proposed 
strategy spend consumes total 21 design simulations to 
locate the optimum, the FUNTGA’s optimum exhibits a 
mean thickness closer to the target and a smaller 
deviation than the BlowOp’s optimum. In fact, 
BlowOp’s result will not show any improvement even 
after the same number of iterations. Figure 11 presents 
the variations of thickness distributions using BlowSim 
that appears that FUNTGA’s optimum has a more 
uniform thickness distribution. 

4. Conclusions 

This study presents how to apply soft computing 
technology to determine the optimum die openings of 
parison programming of extrusion blow molding. 
Taguchi’s method is cost effective to obtain an 
improved design in a few experiments. However, 
possible interactions among parameters and system 
nonlinearity could complicate parameter design. Instead 
of using ANOM of Taguchi’s experimental design, a 
back propagation network is established using Taguchi’s 
experimental data. Engineering knowledge is applied to 
GA using fuzzy rules to search for the optimum. The 
proposed strategy works well with the bottle example. 
The comparison of results demonstrates the 
effectiveness of the proposed strategy. Another 
advantage over BlowSim’s optimization module, 
BlowOp, is its flexibility to include other design 
variables such as materials, temperature control, and 
mold geometry. 
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Fig. 10 Optimum designs using various methods 

Table 5 Comparison of the analysis results 

 
Squared Root 

Avg. Loss 
Mean 

Thickness 
Std.Dev. 

Thickness 
Initial 0.52 1.66 0.40 

Taguchi’s 0.49 2.01 0.49 

BlowOp’s 0.38 1.93 0.38 

FUNTGA’s 0.36 1.94 0.35 
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Fig. 11 Comparison of thickness distribution 
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