應用感應加熱技術改善V溝微結構導光板成型轉寫性之影響

黄明賢、余志成、林穎志、古洪華、鍾金峯 國立高雄第一科技大學 機械與自動化工程系

富强鑫精密工业股份有限公司

摘要

本文利用高週波感應加熱線圈之快速昇溫的特 性,應用於兩吋導光板射出成型,由模仁表面局部加 熱的方式改善導光板微結構成型轉寫性。本研究方法 分為三個階段:(1)找出最佳感應加熱功率與成型視 窗搜尋。(2)使用田口實驗方法,找出感應加熱應用 於導光板微結構射出成型之最佳參數組合。本文以寬 度10µm、深度5µm 之V-groove微結構的兩吋導光 板為載具,研究射出成形微特徵。微結構轉寫性高模 溫有助於提昇微結構轉寫高度之改善,當射速由 100 mm/s提高至150 mm/s時,成品表面收縮現象已經消 失。使用最佳參數組合與未感應加熱最佳參數組合比 較:轉寫高度提昇改善了 31.1%、轉寫角度提昇了 28.7%,導光板的轉寫高度與角度亦成常態分部品質 趨於穩定。

*關鍵字:*感應加熱、微射出成型、快速模具表面加熱、 導光板

1. 前言

導光板是背光模組的一項重要零件,負責將線光 源轉為均勻光輝度的平面。目前背光模組的設計驅於 高輝度及薄形化,導光板的設計亦因之呈現微結構特 徵及本體的薄形化。高深寬比的微結構或次微米結構 成形,高模溫是最影響其轉寫性的重要因子[1],其當 模溫增加到Tg點以上時,對微結構的轉寫性亦加明 顯。由於導光板的微結構成型常受困於傳統模具加熱 溫度不足,導致塑料進入微結構中因接觸模壁冷卻, 造成充填不完全的問題。倘使用高模溫設定,亦常伴 隨成型週期過長或加熱溫度不均勻的問題,這一些瓶 頸有待尋求解決之道。

射出成型在高模溫下,可使融膠處於熔融態流動 性增加,延後固化層的生成時間,使熔膠處於融熔態 將有利於微結構的充填,增加微結構的成型性。高模 溫亦普遍的使用在射出成型上,從 atomic force miscopy(AFM)可觀察微射出縫合線的問題,而模溫及 射速是縫合線的主要影響參數。研究者指出:高模溫、 高射速可以減少 50%縫合線的寬度[2]。且模溫越高所 充填的距離越遠,所成型的微結構深寬比越高[3]。

本研究使用感應加熱之原因為感應加熱技術在加 熱模具表面時,不需對模仁及模壁上進行加工,如複 合模壁絕熱壓縮熱空氣技術、薄膜電阻加熱技術。在 模具中亦節省置入其他加熱器材,增加設計複雜度如 熱電偶加熱技術、高頻率電流加熱技術。在射出機構 上亦不用更改及添置設備增加成本,如紅外線加熱技 術、火焰加熱複合模壁絕熱壓縮熱空氣技術。其加熱 及冷卻速度亦遠小於油溫加熱所需的長時間,在環境 上並不會造成污染,及達到節省能源的效果。本研究 的目的在於改善具 V-groove 微結構導光板之 V 溝轉 寫高度、高度均勻性、及轉寫角度。

本研究分為三個階段:(1) 感應加熱實驗功率之 選定:選定不同之感應加熱頻率加熱於鎳片上,根據 升溫情況及均溫情形挑選適當之功率。(2) 找出各個 因子適當之成型視窗,進行實驗計畫,分別量測導光 板九點轉寫特性,觀察感應加熱對導光板之轉寫性的 影響,並選出最佳參數組合,執行確認實驗。(3) 執 行確認實驗:為確定其良率及品質之均勻性進行試量 產實驗,並分別量測其轉寫高度是否達到穩定。並與 未使用感應加熱之最佳參數進行比較,觀察其微結構 高度轉寫性、高度均勻性、角度轉寫性的表現。

2. 感應加熱原理

在導光板射出成型中,V 溝微結構導光板,因導 光板的微結構成型常受困於傳統模具加熱溫度不足, 導致塑料進入微結構中因接觸模壁冷卻,造成充填不 完全的問題為了提高模溫,本實驗用所使用的感應加 熱及是利用電磁感應(Electromagnetic induction)對金 **屬物件進行加熱的方式,以改善模溫不足成型性不佳** 的問題,此種現象,是法拉第於西元1831年所發現, 此法應用最多的是變壓器,感應加熱原理是利用交流 電轉變成直流電,藉由功率晶體(Power transistor)將直 流電轉變成高週波電流通過感應線圈,使加熱線圈產 生交變磁場,再將一具有磁性感應或非磁性的導電加 工物件,置於加熱線圈所產生的交變磁場內,因為磁 力線的切割,使其在不同的加工物件上面產生渦電 流,並因加工物件的阻抗特性,產生 $I^2R(I$ 為電流、 R 為電阻)熱消耗,使加工物件溫度升高。透過法拉第 電磁感應定律(Faraday Induction Law)得知繞著同一區 域有 N 匝迴路的線圈表明,如式(1)所示:

$$\varepsilon = -\frac{d}{dt}(N\phi_B) = -N\frac{d\phi_B}{di} \times \frac{di}{dt}$$
(1)

其中, ε 為感應電動勢(V),N為線圈纏繞數(turn), ϕ_{B} 為磁通量(Wb)

此電動勢所形成的電流(感應電流),流經導體內

部所產生的功率,依據焦耳定律(Joule effect)可由式(2) 所示:

$$\mathbf{P}_{\mathbf{v}} = \boldsymbol{\rho} \cdot \mathbf{j}^2 \tag{2}$$

其中, P_v 為容積功率密度(Volumetric power density, W/m^3), j 為電流的密度(Current density, A/m^2), ρ 為材料的電阻係數(Resistivity)所以,感 應加熱系統裝置中,有三階段的能量轉換,首先是電 源轉換器的電能轉變成磁能,接著透過感應原理將磁 能轉變成電能,最後由導電性的加工物件吸收電能轉 換為熱能達成溫升效果。決定加熱深度的另一個因數 是加工物之電阻係數,大部分加工物件的電阻係數與 溫度變化有線性關係,其關係式(3)為:

$$\rho = \rho_1 [1 + \partial(\theta - \theta_1)] \tag{3}$$

其中 ρ 代表溫度 θ 下的電阻係數值, ρ_l 代表溫 度 θ 下的電阻係數值, θ 、 θ_l 代表不同的溫度值(°C), ∂ 為電阻溫度係數。

3. 研究載具與實驗設定

3.1 感應線圈選定

本實驗使用之感應加熱系統與射出成型模具配置 如圖 1 所示:(1) 模具連接模溫機加熱到一定的溫度, 並使用感應加熱,以瞬間快速的提高模溫,增加導光 板成型的轉寫率減少成形週期。(2) 感應線圈連接感 應加熱主機可藉由調整功率的大小可以來改變加熱的 深淺。(3) 架設紅外線熱像儀,可以擷取來自銘板上 所反射的 Stamper 的表面溫度。

圖 2 為本實驗所使用之感應線圈尺寸示意圖,本 線圖之設計,其實驗設計法之型式為使用銅管往堆疊 方向擴增,共堆疊 3 層,第一層為 4 圈、第二層與第 三層皆為 1 圈一層,可有效達到應用於射出成型之製 程,可改善橫向與縱向熱分布不均勻現象,且於模具 合模階段無須閒置至均溫等待時間,。本實驗使用之 模仁為表面鍍鎳之 V-grooved 微結構,特徵間距 15 μm、寬為 10 μm、深度 5 μm、深寬比為 0.5,如圖 3 所示。模仁的材質為 STAVAX 之模具鋼,其加工製 程為:(1) 先將不鏽鋼加工至模仁形狀,(2) 對模仁外 型表面進行研磨,(3) 鍍無電解鎳至模仁表面,(4) 再 將表面鍍鎳部分進行研磨,(5) 以鑽石刀進行超精密 加工至實驗需求微結構尺寸。模具材質為 SKD61,水 路設計為 2 進 2 出,如圖 4 所示。

本實驗為選出適當的感應加熱功率,加熱於雨吋 鎳片上藉由鎳片升降溫明顯的特性,找出最佳的感應 加熱功率與感應加熱溫度分布圖,分別如圖4、圖5。 感應加熱溫度曲線在第三秒時移開線圈,溫度曲線瞬 間達到最高溫。功率在40%時因加熱深度較淺,升溫 快但降溫也快在第三秒至四秒時曲線斜率最陡,溫度 從350°C降至280°C溫差達到71°C,高於功率35%、 國立成功大學 台南市 論文編號: D05-008

30%、25%分別為31°C、24°C、28°C的溫差,而且功 率過高加熱時間無法繼續增加,亦無法準確的加熱至 目標溫度,另外一缺點為消耗過多的能源不符合實驗 的需求。在相同的時間下,在功率25%下降溫雖然較 慢但相對的升溫也較慢會增加成形週期的時間,所以 較不適用。功率在30%和35%兩者有較相近的降溫趨 勢,與功率在40%時相同溫度差距下,有較長的降溫 時間,而且升溫也較功率20%快。而使用功率30%較 35%的節省能源,所以功率30%是較理想的實驗功 率,可讓導光板在成形時有較佳的成形環境。

3.2 成型視窗探討

圖6(a)為不同模座溫度與轉寫高度關係圖,在較 高的模座温度下使熔膠温度的梯度變小,轉寫高度的 表現較佳;但在感應加熱下,模座溫度有兼具冷卻的 效果,過高的模座溫度將導致冷卻時間增加,增加成 型週期。在高度均匀性方面,當模面溫度在110°C時, 近澆口部分有足夠的充填性,但在離澆口越遠的部 分,高度轉寫性逐漸下降,距離澆口越遠充填性越差。 因為熔膠在接觸冷模壁後,逐漸凝固流動性變差,造 成充填距離縮短。當模面溫度不足時,近澆口轉寫高 度至遠澆口部分,轉寫高度逐漸下降,充填能力逐漸 下降造成均匀性不佳問題。圖6(b)可看出在不同模面 温度下,微結構轉寫高度有相對的提升。顯示越高的 模面溫度,有越好的轉寫高度,當模面溫度由110°C 提升至130℃時,轉寫高度有提升0.17 µm,但當溫度 由130°C升高至150°C時,高度提升0.06 µm有逐漸減緩 的趨勢,顯示過高的模溫對微結構轉寫高度充填影響 已不顯著。而圖6(c)顯示,在不同的射出速度下,當 射速由140 mm/s提升至160 mm/s對微結構的轉寫高度 有相對的提升,若射速增加至200 mm/s時充填高度有 明顯的增加。顯示提高射速時產生的剪切熱及黏滯加 熱的效應會越明顯,因此降低了熔膠黏度,流動性也 會更佳。在較低射速100 mm/s時,導光板有明顯收縮 現象,在提高射速到150 mm/s時,收縮現象有改善的 情況,將有助於改善成品表面品質。由圖6(d)可知, 在保壓壓力由400 kgf/cm²提升至500 kgf/cm²時微結構 轉寫高度提升1.04 μm,在保壓壓力超過500kgf/cm²之 後,轉寫高度趨於穩定。顯示過低的保壓壓力將無法 給予導光板足夠的補償收縮壓力,但若壓力過當將使 成品產生翹曲的現象。由圖6(e)可看出,較長的冷卻 時間可以增加微結構的轉寫高度,但在冷卻時間達到 35秒後,轉寫高度的增加已逐漸趨緩,所以當冷卻時 間超過40秒後,即使再延長冷卻時間,對微結構轉寫 性的表現影響並不大。由圖6(f)可知,當保壓時間增為 8秒的時候轉寫高度逐漸穩定,並增加成品的成型性, 但過長的保壓時間將增加成型週期。

3.3 田口實驗參數設定

田口方法是以實驗的方法來決定設計參數。而設 計參數可能是生產製程參數,或者是產品的設計參 數。為了減少實驗的次數,田口方法依控制因子及其 水準數目選定了適當的直交表。直交表的種類繁多, 而本研究為考量以較少的實驗次數及忽略因子間交互 作用的影響,因此選用 L18(2¹×3⁷)的直交表

田口方法設計的目標是尋求最佳的產品(或製 程)機能,並且維持此一機能的穩健性,亦即受干擾 因子的影響至最少。實驗中為探討感應加熱應用於射 出機射出成型上,選擇射出速率、保壓壓力、保壓時 間、模溫、冷卻時間、模面溫度此六個製程參數。

本實驗經田口實驗找出最佳參數後,分別量測出 轉寫高度、轉寫高度均勻性、角度轉寫性之平均值、 標準差、S/N 值並排列出因子對轉寫性影響大小順 序。本研究在田口方法之應用為找出最佳成型參數及 以平均數分析與訊噪比(S/N)作為品質指標,求得最佳 的射出成型參數與感應加熱之組合;品質特性理想機 能為以下型態:

(1) 望小特性:品質特性愈小愈好,亦是品質特性的 理想機能是零(假設品質特性是正數),S/N 比公式 為

$$\overline{S/N} = \frac{1}{m} \left[\sum_{j=1}^{m} (-10 \log(\sum_{i=1}^{n} \Delta h_i^2)) \right]$$
(4)

本實驗採用望小特性是量測導光板轉寫高度與角度與 目標值之間的誤差,希望誤差愈小愈好。其中

m:樣本數

n:量測位置

 Δh_i : 量測值與目標值之差

(2) 加法模式(Additive Model)

我們利用因子反應表中的數據,用來預測的公式。因子反應值事實上就是加法模式中的參數;(5)及因子反應 表 構 成 完 整 的 實 驗 模 式 。 $\eta(Ai, Bj, Ck) = \overline{\eta} + (\overline{\eta}_{Ai} - \overline{\eta}) + (\overline{\eta}_{Bj} - \overline{\eta}) + (\overline{\eta}_{Ck} - \overline{\eta})$ (5)

(3) 確認實驗

確認實驗是用來驗證所預測之最佳條件下之平均值是 否有效,我們使用以下的公式來計算確認實驗之期望 平均值的信賴區間:

$$CI_2 = \sqrt{F_{\alpha;1,v_2} \times V_e \times \left[\frac{1}{n_{eff}} + \frac{1}{r}\right]}$$
(6)

 $F_{\alpha;1,V_2}$ =具顯著水準 α 的 F 值

 $\alpha = 顯著水準, 信賴水準=1-\alpha$

V2=合併誤差變異數之自由度

 V_e =合併誤差變異數(pooled error variance)

 n_{eff} =有效觀測數

r=確認實驗之樣本數

若確認實驗結果的平均值(SN 比)落在上述信賴 區間範圍內,表示我們所選取的顯著因子其對應至的 水準是很恰當的。若落在賴區間外表是加法模式不成 立,可能所選的控制因子有問題,必須重新檢討。

因此在因子的選定方面,射出速度是採用 180、 190、200 mm/s 為射出成型參數,第一第三點,在低 射速時,導光板在遠澆口部分無法獲得較好的充填 性,遠澆口充填性低於近澆口部分。保壓壓力的選擇 使用兩段式保壓,以防止塑料回流的情況發生,當保 壓壓力低於 500 kgf/cm²時會產生保壓不足的現象,但 當保壓壓力高於 700 kg/cm²時會使得應力增加,影響 導光板的品值。經由成型視窗參數得知,當保壓時間 到達 4 秒後成品的變動已經不大了,由此可知,保壓 時間至少要 4 秒才不至於因為保壓時間不足而產生收 縮,故保壓時間的選擇為 4、6、8 秒。

本實驗使用感應加熱作為提升模具表面溫度之方 法,故模具溫度在此作為穩定模面溫度兼具冷卻的功 能,當模溫低於60°C時,使模面溫度冷卻過快,以致 無法順利提升溫度,增加轉寫高度,故模溫選擇60、 70、80°C。在冷卻時間方面,因模面溫度較高,在低 於30秒時脫模,成品尚未冷卻足夠,無法順利成型, 而在40秒時已經有足夠的冷卻時間,所以選擇30、35、 40秒。本實驗之模面溫度取決於感應加熱系統之加 熱,根據以往的文獻發現,較高的模溫有助於提高微 結構轉寫性的提升,但在高於140°C以上時,微結構 轉寫高度逐漸不顯著,所以模面溫度選擇加熱至110、 130、150°C,如圖6。

4. 結果與討論

導光板之九點量測轉寫高度及均勻性採用望小特 性,轉寫高度結果如表 1 計算出平均值、S/N 比,並 繪製回應表如表 2,經由 S/N 比反應值,求出各水準 的差異,並找出最佳組合為,A2B1C1D2E2F1。對轉 寫高度影響性大小依序為,模面溫度、射速、保壓壓 力、模溫、保壓時間、冷卻時間。在九點轉寫高度中, 為了求出導光板之均勻性,採取導光板之全距來定義 其均勻性,也就是九點微結構轉寫高度中最大與最小 值的差異,當全距越小均勻性越佳。

在九點角度轉寫性中,分別求出導光板九點之轉 寫角度與 45°之差異,使用望小特性,當量測角度與 模仁標準角度 45°差異越小,其角度轉寫性越好。導 光板之角度轉寫性結果如表 2 計算出平均值、S/N 比, 並繪製反應圖如表 5,經由 S/N 比反應值,求出各水 準的差異,並找出最佳組合為,A2B1C1D1E3F1,對 轉寫高度影響性大小依序為,模面溫度、保壓壓力、 模溫、射速、保壓時間、冷卻時間。經過田口最佳參 數組合得知,導光板之轉寫高度與角度最佳參數組合 其冷卻時間分別為35秒與30秒,為了節省成型週期, 冷卻時間採用 30 秒。兩者之最佳參數,除了冷卻時間 其餘參數均有相同的控制因子,可知此參數可作為同 時探討轉寫高度、轉寫角度之品質特性。田口實驗方 法找出最佳參數組合結果。九點轉寫高度確認實驗最 佳水準組合最佳確認水準組合推估值為 9.82 db, 最佳 水準組合的觀測值為13.17 db, 兩者相差 3.35 db。此 中國機械工程學會第二十六屆全國學術研討會論文集 中華民國九十八年十一月二十日、二十一日

實驗 95%信心區間為 4.23,大於兩者之間的差距。所 以可說推估值與觀測值有 95%的信心確認其夠接近, 線性加法模式成立。九點轉寫角度確認實驗最佳水準 組合最佳確認水準組合推估值為-1.03 db,最佳水準組 合的觀測值為 0.11 db,兩者相差 1.44 db。此實驗 95% 信心區間為 9.19,大於兩者之間的差距。所以可說推 估值與觀測值有 95%的信心確認其夠接近,線性加法 模式成立。

5. 結論

本研究利用感應加熱技術使用於導光板的射出,透過 參數成型視窗實驗與田口實驗設計法找出最佳成型參 數,達到快速升溫提升兩寸導光板微結構成型的表 現。根據研究相關結果可歸納如下:(1)兩寸導光板 在使用感應加熱技術達到高模面溫度 150°C,配合田 口實驗最佳參數射出成型導光板可明顯的提升其轉寫 高度由 60.5%提升至 91.6%、轉寫高度均勻性亦改善 了 21.1%、轉寫角度由 69.4%提升到 98.1%。(2)本實 驗經由田口實驗法,獲得影響導光板轉寫高度及轉寫 角度之重要因子,參數除了模面溫度外,高射速亦是 影響微結構成型性的重要因子之一。在成型視窗參數 實驗中,相同的製程參數下,僅變動射速由 140 mm/s 增加至 200 mm/s 時,導光板成型性由 2.75 μm 提升至 4.51 μm,增加 35.2%成型性。

參考文獻

- A.C. Liou, R.H. Chen, 2006, "Injection molding of polymer micro- and sub-micron structures with high-aspect ratios," International Journal of Advanced Manufacturing Technology, Vol. 28, No. 11-12, pp. 1097-1103.
- G. Tosello, A. Gava, H.N. Hansen, G. Lucchetta, F. Marinello, 2009, "Characterization and analysis of weld lines on micro-injection moulded parts using atomic force microscopy (AFM)," Wear, Vol. 266, No 5-6, pp. 534-538.
- W.B. Young, 2007, "Analysis of filling distance in cylindrical microfeatures for microinjection molding," Applied Mathematical Modelling, Vol. 31, No. 9, pp. 1798-1806.
- 4. P.C. Chang, S.J. Hwang, 2006, "Simulation of infrared rapid surface heating for injection molding," International Journal of Heat and Mass Transfer, Vol. 49, No. 21-22, pp. 3846-3854.
- P.C. Chang, S.J. Hwang, 2006, "Experimental investigation of infrared rapid surface heating for injection molding," Journal of Applied Polymer Science, Vol. 102, No. 4, pp. 3704-3713.
- D.H. Kim, M.H. Kang, Y.H. Chun, 2001, "Development of a notebook PC housing by using MMSH (momentary mold surface heating) process," ANTEC, pp. 3347-3350.

- D.H. Kim, M.H. Kang, Y.H. Chun, 2001, "Development of a new injection molding technology : Momentary mold surface heating process," Journal of Injection Molding Technology, Vol. 5, No. 4, pp. 229-232.
- D. Hatch, D. Kazmer, B. Fan, 2001, "Dynamic cooling design for injection molding," ANTEC, pp. 428-432.
- 9. S.C. Chen, 2005, "Device for advancing even distribution of high cycle wave magnetism," U.S. Patent Number 6909545.
- I.A. Wada, Y.K. Tazaki, O.T. Tahara, T.H. Suzuki and K.Y. Mizutani, 1982, "Injection molded articles with improved surface characteristics production of same and apparatus therefore," U.S. Patent Number 4340551.
- 11. S. Osamu and N. Takao, 1996, "High-frequency Induction coil for mold heating and molding device," Japan Patent Number 08-090623.
- D. Yao, T.E. Kimerling, B. Kim, 2006, "High-frequency proximity heating for injection molding applications," Polymer Engineering and Science, Vol. 46, No. 7, pp. 938-945.
- 13. D. Yao, B. Kim, 2003, "Developing rapid heating and cooling systems using pyrolytic graphite," Applied Thermal Engineering, Vol. 23, No. 3, pp. 341-352.

圖1 感應加熱系統與成形模具配置圖

圖 2 感應加熱線圈尺寸示意圖

中國機械工程學會第二十六屆全國學術研討會論文集 中華民國九十八年十一月二十日、二十一日

圖4 在不同功率下感應加熱時間比較圖

圖5 感應加熱溫度分布圖

(d)

(e)

(f)

圖6 個別參數對轉寫高度影響之成型視窗

因子	射出	保壓	保壓	模座	冷卻	模面	轉寫高度	轉寫角度
編號	速率	壓力	時間	溫度	時間	溫度	誤差	誤差
	(mm/s)	(kgf/cm^2)	(sec)	(°C)	(sec)	(°C)	$\overline{S/N}$ (dB)	$\overline{S/N}$ (dB)
1	190	700/400	8/5	80	40	150	6.45	-3.74
2	190	600/400	6/5	70	35	130	4.87	-10.15
3	190	500/400	4/5	60	30	110	-7.89	-26.93
4	180	700/400	8/5	70	35	110	3.00	-15.20
5	180	600/400	6/5	60	30	150	4.71	-8.73
6	180	500/400	4/5	80	40	130	6.18	-9.49
7	200	700/400	6/5	80	30	130	5.89	-6.98
8	200	600/400	4/5	70	40	110	-6.79	-24.83
9	200	500/400	8/5	60	35	150	5.50	-5.75
10	190	700/400	4/5	60	35	130	2.97	-13.86
11	190	600/400	8/5	80	30	110	-2.70	-16.29
12	190	500/400	6/5	70	40	150	5.28	-8.44
13	180	700/400	6/5	60	40	110	-1.49	-19.38
14	180	600/400	4/5	80	35	150	6.08	-9.36
15	180	500/400	8/5	70	30	130	5.90	-8.40
16	200	700/400	4/5	70	30	150	4.90	-4.94
17	200	600/400	8/5	60	40	130	-3.33	-20.57
18	200	500/400	6/5	80	35	110	-9.40	-28.47
最佳 參數	180	700/400	8/5	70	30	150	6.61	-3.00

表1 L18 田口實驗計劃法因子與水準表及量測結果

表2 微結構轉寫高度 S/N 值效果回應表

因子	А	В	С	D	Е	F						
水準	射速	保壓	保壓	模	冷卻	模面						
		壓力	時間	溫	時間	溫度						
1	1.50	3.62	2.47	2.08	1.05	5.49						
2	4.06	0.47	1.64	2.86	2.17	3.75						
3	-0.54	0.93	0.91	0.08	1.80	-4.21						
差異	4.60	3.15	1.56	2.78	1.12	9.70						
Rank	2	3	5	4	6	1						
S/N 比最佳組合												
參數	A2	B1	C1	D1	E2	F1						
組合	180	700	8	70	35	150						
表 3 微結構轉寫角度 S/N 值效果回應表												
因子	А	В	С	D	E		F					
水準	射速	保壓	保壓	模溫	上 冷谷	卻 模	面					
		壓力	時間		時	間 溫	度					
1	-12.55	-10.00	-10.97	-11.7	0 -13.	72 -6	.14					
2	-11.76	-14.99	-13.69	-11.9	9 -13.	80 -11	1.58					
3	-15.26	-14.58	-14.90	-15.8	7 -12.	05 -2	1.85					
差異	3.50	4.99	3.93	4.17	7 1.7	5 11	.57					
Rank	5	2	4	3	6		1					
S/N 比最佳組合												
參數 組合	A2	B1	C1	D1	E	3 I	71					
	180	700	8	80	30) 1	50					

Application of Induction Heating on Mold Surface to Enhance the Duplication of Light-guided Plate with V-groove Micro structure

Ming-Shyan Huang¹, Jyh-Cheng Yu¹, Ying-Zhi Lin¹, Hung-Hua Ku¹ and Chin-Feng Chung²

¹Department of Mechanical and Automation Engineering,National Kaohsiung First University of Science andTechnology University

²Fu Chun Shin Machinery Manufacture Co., LTD.

Abstract

The study aims to improve the injection molding of light-guided plate (LGP) with microstructure by applying induction heating coil which has the advantages of rapid and uniform heating. This study comprises of two parts: (1) to firstly find the optimal induction heating setting and to search an injection molding process window, and (2) to proceed confirmatory experiment. By using an 2-inch light-guided plate as a research carrier to verify the performance of induction heating, the experimental results indicate that: (1) effect of duplicating the height of microstructure on LGP is significant as the mold surface temperature is heated from 110°C to 150°C. (2) Shrinking defect on the appearance of LGP is improved as the injection speed changes from 100 mm/s to 150mm/s.