應用感應加熱退火於溶膠凝膠法備製鋯鈦酸鉛薄膜與其特性分析

陳盟盛、李晏誠、余志成*

國立高雄第一科技大學機械與自動化工程系

*Email: jcyu@nkfust.edu.tw

國科會計畫編號 NSC 99-2221-E-327-029

摘要

本文研究應用感應加熱退火於錯鈦酸鉛薄膜的 備製與薄膜特性分析, 錯鈦酸鉛(PZT)壓電薄膜以溶 膠凝膠法製備,利用不同的退火方式分析對壓電薄膜 的特性差異,並使用田口法得到最佳的極化條件。本 研究提出應用威應加熱於PZT薄膜的成相退火,以感 應線圈加熱晶圓下之石墨板,藉由熱傳導來加熱PZT 薄膜,成功地備製殘留極化值22.3µC/cm²,矯頑電場 208.1 kV/cm的壓電薄膜。而藉由田口方法找出在 25°C、2倍的矯頑電場做薄膜極化1分鐘,可將相對介 電常數(ε_r)提升11%,殘留極化值由28.4提升至31.3 μC/cm², 矯頑電場則由237.5大幅下降至186.9 kV/cm,經計算橫向壓電應變常數(d31)與縱向壓電應 變常數(d33)有將近22%的改善。所鍍製薄膜最後應用 微機電製程技術製作出薄膜型微振動結構,在3000 Hz的量測頻率下得到其開路電壓敏感度為3.29 μV/g,驗證壓電薄膜之可行性。

關鍵字: 錯鈦酸鉛、壓電薄膜極化、溶膠凝膠、感應 加熱

1. 前言

鋯鈦酸鉛(PZT)薄膜[1]相較於其他壓電薄膜,具 有更高的機電耦合性(Electro-Mechanical Coupling)、 高反應速率以及低啟動電壓的特點,廣泛地應用在感 測與致動元件上。而溶膠-凝膠法(Sol-Gel Method)備 製PZT薄膜具有程序簡易、低成本、控制容易及改變 溶膠溶液之組成比例、較易鍍製大且均勻的優點,常 被應用於微機電元件的製作。

溶膠-凝膠法所備製PZT薄膜為無相膜, 需經由高 溫退火才能成相。PZT的退火方式有爐熱退火 (Furnace Annealing, FA)、快速退火(Rapid Thermal Annealing, RTA)與雷射退火(Laser Annealing)等, 傳 統爐熱退火需要較高的成相溫度才能有理想的鈣鈦 礦結構, 但往往造成元素擴散影響鐵電特性。因此有 許多文獻研究降低退火的溫度或是縮減退火製程的 時間。RTA與雷射退火, 不僅大幅降低製程時間上, 在鐵電特性上也能有改善, 但成本較為昂貴, 且雷射 退火亦有加熱面積的限制。

感應加熱(Induction Heating)速率快,處理時間 短,通常使用在材料的熱處理或是熱加工上的應用 上,又因為感應加熱可藉由電流頻率高低,控制加熱 深度,因此也可使用於射出成形模具的表面,藉以達 到快速加熱降溫的目的[2]。文獻中並未曾出現應用此 加熱方式於壓電薄膜的退火處理上,此種退火方式的 加熱速度比傳統退火爐加熱快速,又有比雷射退火面 積更為廣大的優勢,成本相較於快速退火爐約400 萬,高週波感應加熱設備僅約30~50萬,具有低成本 的優勢。

溶膠-凝膠法備製PZT薄膜為多晶結構,需藉由極 化來提升壓電特性,文獻中的極化研究多為壓電塊材 或是厚膜[3],對於薄膜材料的極化探討也明顯不足, 因薄膜厚度小,極化溫度與電場的搭配不當很容易引 起電擊穿的現象。

2. 壓電薄膜感應退火

2.1 感應加熱設備架構

傳統PZT薄膜在退火部份,以爐熱600及650°C雨 種不同溫度維持30分鐘來退火,重複薄膜披覆、烤 乾、焦化及高溫退火結晶熱處理等步驟來製備多層薄 膜。本研究嘗試應用感應加熱於退火製程,其高週波 感應加熱系統設備架構圖如圖1。

圖1 高週波感應加熱系統設備架構圖

將晶圓已鍍製好已焦化未經過退火的PZT薄膜 置於石墨板上,利用熱傳導的方式,使晶圓快速升溫 並達PZT薄膜退火溫度,整體退火時間可大幅下降, 所採用的感應加熱線圈示意圖如圖2,但因使用石墨 板是利用熱傳導方式加熱,將熱能量傳遞給PZT薄 膜,石墨板厚度將會影響降低加熱速率。

以感應加熱5mm厚的石墨板其升溫曲線如圖3, 能使錯鈦酸鉛薄膜成功退火且不因快速加熱的熱傳 導方式退火導致熱應力過大而破碎,並利用熱像儀拍 攝經過加熱後的石墨板,得知其熱相儀拍攝之加熱範 圍如圖 4,從溫升曲線中得知,加熱升溫相當穩定, 選用功率300W間距5mm加熱石墨板至350°C僅約55 秒,溫升速率約5°C/秒,可預測升溫至600°C時的時 間約為120秒,而實驗實際做加溫退火的時間為 130~150秒,應可達到錯鈦酸鉛薄膜所需退火溫度。 中國機械工程學會第二十八屆全國學術研討會論文集 中華民國一百年十二月十日、十一日

2.2 薄膜成相與結晶檢測

以600及650°C的爐熱退火30分鐘,在1~6層不同 層數下,每層皆有做30分鐘的400°C焦化再一起做30 分鐘的600°C退火後的X-ray繞射圖如圖5,可發現 PZT在(100)、(110)、(111)、(200)、(210)、(211)皆有 繞射峰,與JCPDS對照可以發現在600°C退火情形下 在1~3層做多層塗佈一起退火的PZT薄膜可完全轉相 成為鈣鈦礦相(Perovskite),而若是以650°C做退火則 在1~4層可得到完全成相。

而應用感應加熱退火則是以功率300W加熱間距 5mm的條件下,加熱140秒並且持溫(220W)20秒可以 得到完全轉換成鈣鈦礦相結構如圖6。觀看PZT的表 面晶粒圖如圖7,使用600、650°C以及應用感應加熱 的SEM圖,其晶粒皆在約300nm。

圖2 感應加熱線圈示意圖

圖3 厚度 5mm 石墨不同功率與感應距離之升溫曲線

圖 4 感應加熱溫度分佈圖

圖5 PZT 薄膜在不同層數下一起使用 600°C 爐熱退火的 X-ray 繞射圖

圖6應用感應加熱對鋯鈦酸鉛薄膜退火 XRD 圖

圖7 PZT 薄膜表面晶格圖

圖8 以 600°C 每三層一起退火之 P-E curve

圖9應用感應加熱對 PZT 膜退火 P-E curve

2.3 電滯曲線(P-E curve)量测分析

此實驗使用上電極面積0.01cm²,PZT薄膜厚度為 0.3~0.9µm作量測電滯曲線(P-E curve),以600°C退火 之試片量測得30.7 (μC/cm²)之殘留極化值,矯頑電場 為238.2 (kV/cm),應用感應加熱退火之殘留極化值與 矯頑電場則為22.3(μC/cm²)及208(kV/cm),如圖8~ 圖9。

3. 鋯鈦酸鉛薄膜極化

3.1 薄膜極化機制

多晶壓電材料在未極化前雖具有自發性偶極矩 (Spontaneous Polarization Dipole Moment),但因為各 晶域(Domain)內的偶極矩方向是散佈於各方向,偶極 矩的效果會互相抵消,此時壓電材料即不具有壓電 性,需經過直流高壓的極化處理,將原本隨機散分佈 的晶域依極化電場方向做重新規則排列,使晶域內偶 極矩方向能平行電場方向,此時材料的壓電特性才會 顯現。

影響極化的因素主要包括極化時間、極化溫度和 極化電場,一般而言,在薄膜不擊穿的情形下,電壓 越高其趨動力就越大,而極化溫度越高可使晶域的移 動性增加,尤其極化溫度越接近居禮溫度時,極化效 果會較好,且極化電場若越高則所需的極化時間越 短。本研究使用HP 4294A阻抗/增益相位分析儀量測 極化前後電容差異,並計算其改善率。

3.2 極化參數實驗計畫

對於PZT壓電薄膜而言,不同的製程、極化電 場、極化溫度,其所需要的極化時間都會不同。過高 的電場有可能會使PZT壓電薄膜崩潰,溫度的增加可 使壓電材料的電阻減少,但也可能因此出現過大的通 過電流,使PZT薄膜受到破壞。

本研究極化實驗試片的PZT壓電薄膜鍍製12層 (Ag/Cr/PZT/Pt/Ti/SiO₂/Si)約0.74µm,在極化前先以 HP4294A阻抗/增益相位分析儀量測其電容值,同時 將試片放置於矽油中進行極化動作,隔絕空氣的接 觸,以增加PZT薄膜可耐受的極化電場,而不會過早 擊穿。實驗採用田口L9直交表第1至3行配置極化溫 度、極化時間和極化電場,其水準設定如表1。其中 極化電場由量測到的電滯曲線圖中的矯頑電場(E_c)倍 數為基準,分為1倍E_c值、2倍E_c值、2.5倍E_c值。而電 場若再往上選擇3倍E_c值,可能導致PZT壓電薄膜擊 穿導通而無法使用。

表1 直交表之控制因子實驗配置

W 溫度	T 時間	E 極化電場
(°C)	(min)	(KV/cm)
25	1	Ec
25	10	2 E _c
25	30	2.5 E _c
80	1	2 E _c
80	10	2.5 E _c
80	30	Ec
120	1	2.5 E _c
120	10	Ec
120	30	2 E _c

以極化後的薄膜電容值作為目標,利用田口方法 中的望大型訊噪比(S/N)如式(1)作為品質特性:

$$S/N = -10\log(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{y_i^2})$$
(1)

因每各點所量測到的初始電容並不完全相同,為得知 極化效果的最佳參數,以增益改善率越大越好,每組 參數採五組試片的改善率計算訊噪值(S/N值)。

3.3 極化對薄膜壓電特性的影響

極化後的試片以HP 4294A,頻率固定於3kHz時 量測其電容值,並將 C_p 值代入(2)式即可得薄膜介電常 數(ϵ_r),其中 ϵ_r 為相對介電常數(Relative Dielectric Constant)、d為PZT壓電薄膜厚度、A為電極面積大 小、 C_p 為量測電容值, ϵ_0 為真空介電常數(Permittivity of free space)。實驗中所量測得到的極化前後之電容 值、介電常數、增益值及改善率,經過平均後用來計 算S/N的數據如表2。

$$\varepsilon_r = C_p \frac{d}{A\varepsilon_0} \tag{2}$$

平均值 編號 W (°C) T (min) E (xEc) 標準差 訊噪比 25 7.74% 1.20% -22.53 2 25 10 2 8.95% 1.12% -21.16 30 3 2.5 -0.94% 0.55% -43.64 25 4 80 1 2 5 35% 0.93% -25.81 5 80 10 2.5 -0.89% 0.68% -45.37 80 30 3.53% 0.70% -29.53 6 1 7 120 1 2.5 2.21% 0.18% -33.20 8 120 10 1.79% 0.50% -35.88 1 120 30 -3.84% 1.61% -30.15 9 2

圖11 最佳化參數極化前與極化後之 P-E Curve 圖

由圖10訊噪比折線圖得知最佳極化參數為在溫度25°C矽油中、使用2倍極化電場極化1分鐘可得最佳 電容改善率,提升PZT薄膜極化溫度並不會提升電容 有幫助環,可能因為薄膜本身因厚度較薄,電壓的力 量即可使晶格轉向,而時間的增加不只沒有使極化效 果變好,甚至有可能變差,原因可能是因為PZT壓電 薄膜給電壓後會有為電流通過,時間過久即可能造成 薄膜受損,因而破壞膜本身的特性。

將實驗所得的極化最佳參數(25°C、1min、2 E_c) 做實際極化並量測其電滯曲線如圖11,由極化前後之 介電常數(ϵ_r) P_r 值代入式(3) 及(4),即可求得理論之 橫向壓電應變常數d₃₁及縱向壓電應變常數d₃₃值,其 中Q₁₂為電伸縮係數(-3.1×10⁻² m⁴/C²)[4],Q₁₁為電伸 縮係數(9.3512×10⁻² m⁴/C²)[5],因文獻中找不到薄 膜係數值,暫以塊材特性估計。

$$d_{31} = 2Q_{12}P_r\varepsilon_0\varepsilon_r \tag{3}$$

$$d_{33} = 2Q_{11}P_r\varepsilon_0\varepsilon_r \tag{4}$$

Pb(Zr_{0.52}Ti_{0.48})O₃組成成分下的 PZT 薄膜經極化後, d₃₁及 d₃₃值由原本的-55及 166,提升至-66 (pC/N)及 202(pC/N),改善率為 22%如表 3,證實極化確實可以 改善壓電薄膜的壓電特性。

表3 最佳化參數極化前與極化後各特性數值比較

	P_r	C_p	εr	d_{31}	<i>d</i> ₃₃
Before Poling	28.4	4.21	352	-55	166
After Poling	31.3	4.67	390	-66	202
Improvement	10 %	11 %	11 %	22 %	22 %

註:電極面積為 0.01cm², PZT 薄膜厚度為 0.74µm

4. 薄膜型微震動導塊結構訊號量測

4.1 量測架構

若壓電材料是一完美的絕緣體材料,在電路分析 上可以視其為一電荷產生器與等效電容的並聯,但實 際上壓電材料並非為完全絕緣體,因靜態應變累積在 電極表面的電荷會因為壓電材料本身的阻抗有限制 而使電荷流漏,因而導致壓電為震動結構無法量測靜 態加速度,而在低頻信號的頻率響應也較不佳,因此 本實驗針對壓電微震動結構的動態量測設計一量測 設備如圖12。

圖12 動態量測架構圖

4.2 微振動結構分析模擬

本文設計之微振動結構以薄膜支撐導塊,在薄膜 產生最大形變時,使配置在上方之PZT薄膜因質塊慣 性力造成薄膜變形,使上方之壓電轉換元件同時彎曲 變形,正壓電效應將機械應力轉換成壓電訊號輸出。

薄膜型微振動結構製作流程主要基材的製備選 用525μm P-Type (100) 雙拋的矽晶圓,先以高溫氧 化爐在晶圓兩面作熱氧化生長5000Å的二氧化矽 (SiO₂),一面作為做為阻擋層防止下電極Ti擴散到矽 基材,而另一面則可作為TMAH蝕刻矽基材時的阻擋 層。接著做背部質塊的微影,以光阻為保護層使用 BOE(Buffered Oxide Etchant)蝕刻SiO₂。以電子束蒸鍍 機(Electron Bean Evaporation)熱蒸鍍Pt/Ti,再以Lift off製作下電極。接著使用Sol-Gel法調配的PZT前置溶 液以旋鍍方式披覆在下電極之上,經過400°C焦化、 600~650°C退火等熱處理過程即可得到鈣鈦礦結構的 壓電薄膜,之後再次以Lift Off製程製作上電極,製作 步驟奧下電極相同。而後即可進行背部島塊蝕,使用 25%wt、80°C的TMAH蝕刻液蝕刻出背部島塊,蝕刻 深度為475 (µm),至此只要再以光阻為保護層,並使 用1:12的BOE與水蝕刻PZT使下電極裸露出,即可 完成薄膜型微振動結構。

4.3 微振動結構訊號量測

若假設此時介電常數(ϵ_r)是如表3所列之352,此 時微振動結構之電極面積為4.8×10⁻⁷ m²,將計算得知 此時之預計等效電容值約為2.0208 nF,利用式(5)換 算可得,其敏感度為3.29 (μ V/g)。此薄膜型微震動結 構之模擬,在加速度為9.81 (m/sec²),頻率為 ω_n /5 = 4696 (Hz)之敏感度為26.8 (μ V/g),其模擬值與實際量 測的差異,主因可能在島塊蝕刻與實際蝕刻時可能造 成底切情形,亦或薄膜厚度未達蝕刻預計厚度,以及 外接導線上,因為是使用銀膠連結裸線,接合易不緊 密或缺陷,造成電壓訊號傳輸影響,並且並未做封裝 處理,在大氣中也容易造成雜訊過大或是環境影響頻 率的情況。

$$Q = C_n \cdot V \tag{5}$$

5. 結論

本研究成功應用感應加熱對PZT薄膜做退火處 理,利用線圈設計與石墨板達到均溫退火的目的,在 應用感應加熱的情況下加熱140秒(300W)及持溫20秒 (220W)製作完全轉換成鈣鈦礦相的PZT薄膜,並且在 壓電薄膜塗佈三層及六層(每三層一起退火)的量測殘 留極化值各為16.4、22.25μC/cm², 矯頑電場各為 178.5、208.1 kV/cm, 確認了應用感應加熱退火的可 行性。而壓電薄膜極化參數最佳化在極化時間、溫度 和電場作為控制因子後,並使用田口的L9直交表實驗 中得知,在室温25°C的極化溫度,選擇兩倍矯頑電場 做極化電場,極化一分鐘為極化最佳參數,極化後電 容與介電常數(Er)改善11%,殘留極化值提升10%, 矯頑電場下降為27.1%,在經過理論公式計算橫向壓 電應變常數(d31)與縱向壓電應變常數(d33)有將近22% 的提升。而經由實際製作之薄膜型微震動結構,在頻 率3kHz下所量測之敏感度為3.29µV/g,也驗證了薄膜 的可行性。

表4 薄膜型微震動結構模擬分析之尺寸

薄膜寬度 L _B	1300µm	
薄膜厚度 H _B	50µm	
壓電層長度 W _B	800µm	
壓電層寬度 W _E	200µm	
壓電層厚度 H _E	0.74µm	
壓電層與邊界間距 W _{EF}	100µm	
質塊高度 H _M	525µm	
質塊底部寬度 L _{Mb}	1507µm	
質塊頂部寬度 L _{Mt}	2200µm	

圖14頻率 3000Hz 下量測之輸出電壓訊號圖

6. 致謝

本研究承蒙國科會經費支持,計劃編號 99-2221-E-327-029,特誌謝意。

7. 参考文獻

- [1] S. Xiong, et al., "Piezoelectric properties of PZT films prepared by the sol–gel method and their application in MEMS", Thin Solid Films, Vol. 516, pp.5309-5312, 2008.
- [2] M.-S. Huang, J. Yu, Y.-C. Lin (2010) "Effect of Rapid Mold Surface Inducting Heating on the Replication Ability of Microinjection Molding Light-guided Plates with V-grooved Microfeatures", J. of Applied Polymer Science. Vol. 118, Issue 5, December 2010, pp. 3058-3065
- [3] J. Akedo, M. Lebedev,"Effect of annealing and poling condition on piezoelectric properties of Pb(Zr0.52,Ti0.48)O3 thick films formed by aerosol deposition method." Journal of Crystal Growth 235(2002)415-420.
- [4] T. Abe, and M. L. Reed, "RF-Magnetron Sputtering of Piezoelectric Lead-Zirconate-Titanate Actuator Films Using Composite Targets", IEEE Proc. MEMS'94., pp. 164-169, 1994.
- [5] K. R. Udayakumar, S. F. Bart, A. M. Flynn, J. Chen, L. S. Tavrow, L. E. Cross, R. A. Brooks, and D. J. Ehrlich, "Ferroelectric Thin Film Ultrasonic Micromotors," IEEE Proc. MEMS'91, pp. 109-113, 1991.
- [6] B. J. Moulson, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, 1971.

- [7] J. Yu, and C. Lan, "System modeling of microaccelerometer using piezoelectric thin films," Sensors and Actuators, Vol.A88, 2001, pp.178-186.
- [8] J. Yu, and J. Wu, (2009) "Analysis of Material Processing of Sol-Gel Derived PZT to the Performance of Microaccelerometer Applications" Proceedings of the Symposium of Design Test Integration and Packaging (DTIP) of MEMS and MOEMS, Rome, Italy, 1-3 April 2009.

Material properties of the lead zirconate titanate thin films prepared using sol-gel and induction annealing

Meng-Sheng Chen, Yan-Cheng Li, and Jyh-Cheng Yu*

Department of Mechanical and Automation Engineering National Kaohsiung First University of science and Technology

Abstract

The study investigates the material properties of the lead zirconate titanate thin films prepared using sol-gel and induction annealing. The material characteristics of the piezoelectric thin films annealed using two heat treatment methods: furnace heating and induction heating, are compared. The induction coil heats up the graphite placed under the silicon wafer coated with sol-gel PZT. The temperature of the PZT thin film can be raised to 600°C in about two minutes by heat conduction. Preliminary results shows the piezoelectric thin film can be successfully crystallized with a remnant polarization of $20.1(\mu C/cm^2)$ and coercive field of 225.7(kV/cm). The parameter design using Taguchi method suggests an optimum poling condition at twice the coercive electric field for one minute at 25°C. The capacitance enhances from 4.21 to 4.62 (nF), the relative dielectric constant (ε_r) from 352 to 390, and the remanent polarization from 28.4 to 31.3 (μ C/cm²). The coercive field also largely decreases from 237.5 to 186.9 (kV/cm). The transverse piezoelectric strain constant (d_{31}) and the longitudinal piezoelectric strain constant (d_{33}) improve 22%. The PZT thin film is introduced to the fabrication of an inertial vibration device. An open circuit voltage sensitivity of 3.29 μ V/g at the frequency of 3,000 Hz is observed, which demonstrates the feasibility of the PZT thin film.

Keywords: PZT, Poling, Sol-Gel, Piezoelectric thin film, induction annealing