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ABSTRACT

This paper describes a robust optimization methodology for
designs involving either complex simulations or actual
experiments. The methodology adopts a new objective function
which consists of an Expected Performance (EP) and a weighted
Quality Index (QI). This definition enhances the measure of
optimality and robustness. This paper introduces the Quadrature
Factorial Experiment to estimate the expected performance and
standard deviation. This technique greatly reduces the number
of experiments and provides superior results for performance
with significant interaction effects and nonlinear variations. The
case study applies the proposed methodology to the design of
helical gears with minimum peak-to-peak transmission error
(PPTE) using the profile modification technique. The robust
optimum shows a significant reduction of the expected PPTE
compared with previous studies, while maintaining the
insensitivity to profile errors, shaft misalignment, and load
variation.

INTRODUCTION

All products are subject to the variations of raw material,
manufacturing, and operational conditions. Quality designs
must perform to specification throughout the intended product
life despite these variations, and have excellent attributes such as
low cost, weight, etc. Traditionally, engineers conducted
sensitivity analysis after design optimization (Vanderplaats,
1984). It has become increasingly important to incorporate
manufacturing and operational variations in the early design
stage. This paper aims to develop a methodology to integrate the
variations of design variables in the optimization process to
achieve the “Robust Optimum” (Yu & Ishii, 1993).

Taguchi (1978) introduced the concept of Parameter and
Tolerance Design to improve the quality of a product whose
manufacturing process involves significant variability.
Parameter design reduces performance deviation by reducing the
sensitivity of an engineering design to sources of variations
rather than controlling the sources. Taguchi treated tolerance
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design as the last resort to tighten the most sensitive variables
and bring the performance deviation up to specification. The
concept improves quality, but at a cost no higher than necessary.

Taguchi’s approach is cost effective in improving product
quality and has attracted public interests in the application of
quality control at the design stage (Kackar, 1985; Hunter, 1985;
Barker, 1986). There are plenty of successful applications in
industry (Brendell, 1989; Wu, 1989; Sundaresan, 1989). Several
researchers have extended Taguchi’s method to optimization
procedures. Tsai & Ragsdell (1988), Chang (1989), and d
ntremont & Ragsdell (1988) adopted Taguchi’s concept of
quality-loss and cast the reliability of a product performance into
a nonlinear programming procedure. Their goal is to minimize
performance variability when the design is constrained to have
target performance. In the case that both the performance and
the deviation are design objectives, Sundaresan et al. (1989),
Sandgren (1989), Eggert & Mayne (1990), and Yu & Ishii
(1993) modified the objective function in the optimization
procedure to seek the robust optimum.

On another front, several studies addressed the deficiency
of the Taguchi's method in the selection of performance measure
(Leon et al., 1987; Tribus & Szonyi, 1989) and the experimental
design of systems with potential interaction effects (Ryan, 1988).
Box (1988) showed that one should not attempt a single
criterion, such as Taguchi’s signal-to-noise ratio, for all
applications. He recommended using exploratory data analysis
and evolutionary operation to identify the best transformation.
Montgomery (1991) pointed out that Taguchi’s approach to
experimental design is weak in dealing with potential
interactions between controllable factors and that his method of
data analysis may confound location and dispersion effects.
D’Errico & Zaino (1988) demonstrated a mathematical
explanation of the Taguchi method of tolerance design, but
showed that Taguchi’s results are not optimal. They proposed a
modified procedure for statistical tolerancing with better
solutions. Few studies address the nonlinearity of performance
deviation and variation correlation. Yu & Ishii (1994)
introduced the concept of the Manufacturing Variation Patterns



(MVP) to characterize the coupled variations of design variables
and determine the constraint uncertainty.

This paper proposes the robust optimization procedure for
system involving experiments or complicated simulations.
Section 2 introduces our new definition of objective function
consisted of an Expected Performance (EP) and a weighted
Quality Index (QI), which leads to the robust optimum. The
methodology adapts the Fractional Quadrature Factorial (Yu,
1994) to estimate the expected performance and standard
deviation. This technique greatly reduces the number of
experiments and provides superior results for performance with
significant interaction effects and nonlinear variations. Section 3
applies the proposed methodology to the design of helical gears
with minimum peak-to-peak transmission errors. Conclusions
and future work comprise section 4.

ROBUST DESIGN OPTIMIZATION

Background

Conventional optimization minimizes the nominal value of
the objective function and overlooks the deviation of the
function due to manufacturing and operation errors. Figure 1
highlights the difference between the conventional peak
optimum P and the robust optimum R. For simplicity, the
objective y is assumed to be a function of a single parameter x.
The concept also applies to designs with multiple variables.
Parameter x often contains a statistical variation due to
manufacturing errors. Conventional optimizations believe that
point P is the design optimum. However, x will normally
distribute between P, and P, for a mass production process. The
design might end up with an objective value as worse as P, due to
the variation of x. Naturally, one can tighten the tolerance of x to
control the deviation of the objective. However, smaller
tolerance will result in a higher controlling cost. In contrast, if
we target the design at point R, the deviation of y becomes
significantly smaller with the same distribution of x. In
comparison with the design P, the design R is more  obust”.
Although the nominal objective of point R may not be the
minimum, the overall quality is better. Robust optimization
seeks designs which are close to the peak optimum but
insensitive to the variations of control parameters.

Objective Functiony

>

7
Parameterx

Figure 1. Peak optimum P and robust optimum R
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Probabilistic Optimization

Conventional constrained optimizations minimize the
nominal performance and take the following formulations:

Minimize y(X) (1)
Subject to gi(X) <0 forj=12,..,] 2)
hy(X) =0 forn=1,2,..K 3)
X=(x), X3y x,)7 “)

The design vector X is subject to inequality constraints g;(X)
and equality constraints /,(X). x; stand for the design variables,
such as geometry, material, and manufacturing parameters, and
often inherit variations. The objective y(X) is a function of x; and
will thus have a statistical distribution. The constraints contain
uncertainty as well due to the variations of design variables.

Probabilistic optimization (Siddall, 1984) takes into
account of the uncertainties of control variables and constraints,
and minimizes the expected value of the objective function. This
concept remodels the formulations as follows:

-
Minimize b = E[y(X)] - Jy(X) (X)X 4)
Subject to  Probability[g,;(X)<0 n..n g,(X)<0)] = P, (6)
E[hyX)] =0 fork=1,2,...K @)
X<Xx<Xx'

p(X) is the joint probability function of X

P, is the required probability of a feasible
design

where

To satisfy the inequality constraints, the joint probability of
the feasibility must be larger than a specified probability P,
which represents the rejection rate of the design. Probability
optimization requires the joint probability density function p(X)
which is usually unknown. Even if the joint probability function
is given, the evaluation of the expected value will be
computationally intensive.

In addition, probabilistic optimization solely optimizes the
expected value of response, which will not guarantee a robust
design. Figure 2 gives an example of two designs with the same
expected performance. However, Design 1 has a better quality
than Design 2 because of the smaller performance deviation.
Thus, robust design optimization should optimize expected value
as well as performance deviation.

T
Xz

Design 1 Design 2

Figure 2. Designs of the same expected value but different
variations



Objective Function for Design Robustness

One way to include performance deviation to design
optimization is to modify design objective. Taguchi proposed
the Signal-to-Noise (S/N) Ratios as performance criteria and
claimed that the transformation of the S/N ratio separates the
dependence between the mean and the standard deviation which
facilitates the process of parameter design. However, Leon et al.
(1987) pointed out that S/N is appropriate only when the
deviation is proportional to the performance mean. Box (1988)
also showed that S/N ratio confounds location and dispersion,
and can be extremely inefficient.

Taguchi optimized the S/N ratio and did not consider the
actual mean and deviation of the performance which may result
in a solution far away from the peak optimum. Sandgren (1989)
described the design process with a tree structure and included
the design sensitivity to uncertainty parameter in multi-objective
nonlinear goal programming. He assigned the weighting factors
according to the priority ranking of each goal constraint. In
contrast, Sundaresan et al. (1989) used Taguchi’s orthogonal
array and proposed a weighted sum of the center response and
the sensitivity index (SI) as the design objective to seek the
Statistical Optimum.

FX)=a*L +(1-a)*SI

Tz -
SI = |— L—-L.
‘/mz< )

where o is the weighting factor, 0 < a <1
m is the number of trials in the orthogonal array
L. is the center response

®)
©)

L,; is the response in the orthogonal array

If the response variations are linear, L, and SI will estimate the
performance mean and standard deviation respectively.
However, if nonlinearity becomes a concern, the actual meanings
of L, and SI become obscure.

Eggert & Mayne (1990) suggested another objective that
consists of a weighted sum of the expected mean (4, and the
standard deviation 0, of the performance y:

F(X):w*uv“+y*o'y (10)

However, the exact evaluations of expected means and variances
will be very computationally intensive. Moreover, the actual
joint probability function is usually not available. The selection
of the weighting factors, wand ), are somewhat arbitrary, which
makes the formulation lack physical meaning. Yu & Ishii (1993)
advocated another form of the objective function based on the
concept of statistical worst case to seek the Robust Optimum:

F(X) =g+ B*ay = EP+B*0l (1)
where Expected Performance (EP) is an estimate of
expected mean
Quality Index (QI) is an estimate of performance
deviation
B s the quality coefficient

The objective function consists of two components. EP
leads to a probabilistic optimum in the optimization procedure,
and QI ensures design robustness. Yu and Ishii used the
Quadrature Factorial Design to estimate mean and performance
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deviation. Section 2.5 will give the details of the evaluation of
EP and QI The quality coefficient 8 in Equation (11) serves in
two ways:

(1) If the performance y has a normal distribution, the
objective function F(X) represents the statistical worst
case response at the confidence level corresponding to .
For instance, if the original objective is to minimize y(X),
Figure 3 shows that F(X) will stand for the worst case of y
at the confidence of 97.7% by selecting 3=2. We can
control the reject probability of the design using the

appropriate 3.

20y

Probability Density

91.1%

s LY

FX)

Figure 3. Illustration of the definition of the objective function

If the distribution of Y is far from normal, the selection of
B controls the design focus between expected
performance and design quality. Higher weighting of O/
gives designs with a smaller performance deviation, while
decreased weighting will shift the design to a probabilistic
optimum.

@

STATISTICAL EXPERIMENTAL DESIGN

Factorial experiment (Montgomery 1991) is a statistical
technique that investigates the effects of two or more factors
(design variables) by conducting the experiments at all possible
combinations of the levels of the factors. The experimental size,
however, multiplies quickly. Fractional factorial designs use
only a fraction of the experiments to investigate the significant
effects. The main factors and interaction effects are confounded
(or mixed) with higher order interactions in a fractional factorial
design. However, these higher order interactions are often
negligible in practice, which enables us to get an accurate
prediction in spite of the reduced number of trials. The bottom
line is to design a fractional factorial so the significant effects
will not confound with each other.

Fractional Quadrature Factorial Experiment

Two-level factorial works well if the effects are linear over
the variation range. However, the accuracy becomes doubtful if
nonlinearity is present. Three and higher level factorial designs
give some improvement but result in a large and complex design.
Instead of using 3-level FFE, we adopt the 2-level FFE
augmented with center points (2FFEC) to cope with the possible
nonlinearity, while at the same time keeping the size and
complexity low. The augmentation of center points enables us to
identify the pure quadratic effects of the model. If the curvature
effect is significant, one needs to include the quadratic terms in
the regression model. A statistical analysis program, such as



JMP (1989) will easily provide us with the model of the response
surface as shown in Equation. (12).

y:BU+iBiXi+zzﬁij>§xi +iﬁii>§2+8 (12)
i=1 i<] i=T

The theoretical evaluations of the mean and the variance of
performance y(x) are as follows:

Ep()]=p, = fy(X) Cp(x) Gix (13)

varlp (0] = 0” = f(y(x) ~EG) 0@y

where X =[x,.....x,]"
p(X) = joint probability density function of X.

(14)

The evaluations are very expensive particularly for complex
simulation models and designs involved with actual experiments.
Moreover, the joint probability functions are usually not
available. Numerical integration, such as Gaussian integration,
uses a weighted sum of a finite number of response to estimate
the expected value.

ZHO RS (9

Var[y(x)] = Z w, [(Y(xi)_ E(y))2 (16)

Taguchi (1979) adopted the similar concept and proposed a
uniform weighting for variables with normal distribution. He
chose [4;#0; as high and low levels for a 2-level design, and U;
and W,+04(3/2)%° as the center, high and low levels respectively
for a 3-level design. This method works well for the estimation
of expected mean. The estimation of variance, however,
becomes poor if y contains quadratic effects such as the
regression model of Equation (12).

D rrico & Zaino (1988) presented an alternative method
using the Gauss-Hermite quadrature integration (Engels, 1980).
This approach provides better results particularly for nonlinear
cases. Figure 4 illustrates the selection of levels and the
corresponding weighting for normal and uniform variables. The
two-point method will provide accurate estimate of the variance
of linear function, while the three-point method is good for
quadratic functions.

If x; are independent variables, the joint probability density
function can be represented as follows:

P(X)= p(x) Op(x,) D Tp(x,) a7
where p(x;) is the probability function of x;.

206

Wi

12 12 Wi 12
Two Point
Approximation
X
-0 p+o U= A3 p+ 4B
Normal Distribution Uniform Distribution
4/6
Wi )
l W s
Three Point 6 6 5/18 5/18
Approximation
X
u-Bo p pu+Bo  p-Jo62 p p+J06’

Normal Distribution Uniform Distribution

o: Standard deviation of normal variable
22 : Tolerance range of uniform variable

Figure 4. Selections of levels and weightings of normal and
uniform variables

Quadrature factorial design selects the quadrature points as
experimental levels to estimate expected mean and variance. The
total weighting for each treatment (variable combination) is
equal to the multiplication of the corresponding weighting of the
individual level.

Wi=w;*w,...*w, (18)
where w; is the corresponding weighting of variable x; at the
assigned level

In practice, the performance nonlinearity within the
variation range is moderate and can be characterized with a
semi-quadratic regression model.

zZBijxix,""Bll (1)

significant
interactions

2
Sl e
significant
quadratic terms

K
y:BO +ZBix1 +
=

The center point is used to estimate the combining quadratic
effect 3.

Fractional Quadrature Factorial adapts the three-point
quadrature method to the 2FFEC. The design defines the high

and low levels as K V30, for normal variables and 1+ 0.6,

for uniform variables, and applies the least square fit of the
fractional factorial data to obtain the local regression model as
shown in Equation 19. The model generates the missing
responses and expands the 2¢7 fractional factorial data to a
contrived 3* factorial as illustrated in Figure 5. The substitutions
of the contrived 3* factorial to Equations (20) and (21) produce
the expected performance and the quality index.

D] = EP= Y .13, (20)

War[y(X)] = 01 = & w, iy, —E(y))zgz

N=3"

2n

where



Model

Figure 5. Contrived 3 factorial data from 2¥P FFEC

Numerical Example

Figure 6 shows a numerical example of a typical quadratic
response surface within the +30 tolerance range. Assuming x;
are normal variables, the expected mean of f(x,, x,) is -1.6366
and the standard deviation is 0.1767 via simulations using 1681
function evaluations, a sufficiently large number to give precise
estimates. Figure 7 shows the estimation results. All four
methods give very accurate estimates of expected mean.
However, the Fractional Quadrature Factorial provides a
superior estimate of variance with a much smaller number of
experiments.
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Figure 6. Sample quadratic response surface within the tolerance
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Figure 7. Estimation results of expected mean and variance
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APPLICATION: HELICAL GEARS WITH MINIMUM
TRANSMISSION ERRORS

Background

Welbourn (1979) defined the transmission error as  he
difference between the actual position of the output gear and the
position it would occupy if the gear drive is perfect (infinite
stiffness and conjugate teeth).” Manufacturing errors of tooth
profile and shape deformations due to gear load, when coupled
with the shaft misalignment, increase the transmission error
drastically. Gear profile modification has been an effective
technique to reduce the peak to peak transmission error (PPTE).
The modifications enable the unloading of one mating tooth pair
when the second pair makes initial contact, which lessens the
sudden increase and decrease of mesh stiffness and reduces the
variation of transmission error. However, the improvement is
sensitive to manufacturing errors and load variations
(Sundaresan, 1992). Our study seeks the robust optimum
modification which has the least expected PPTE, while the
performance is less sensitive to profile errors, shaft
misalignment, and load variations.

Figure 8 illustrates the concept of profile modification.
This study uses the Load Distribution Program (LDP, 1991) to
predict the PPTE. The LDP is a computer program for predicting
the load distribution across the zone of contact for a single pair of
spur or helical gears. The method assumes the load distribution
to be a function of the elasticity of the gear system and errors or
modifications on the gear teeth. Lowe (1985) conducted
experiments for spur gears, and showed that the predicting load
distribution of LDP correlates well with the measured mesh
deflection.

LDP characterizes the modification with two parameters: 1)
the starting roll angle ¢ of the modification and 2) the amount of
tip relief O of the gear teeth.

UR, 5
=0 -1
OR

Starting Roll Angle ¢ = g
b

22)

Figure 8. Gear profile modification



Face Width

Figure 9. Parabolic lead modification

TABLE 1. HELICAL GEAR GEOMETRY
(SUNDARESAN, 1992)

GEOMETRIC PARAMETERS Pinion Gear
Transmitted torque (in-1bs) 750.0
Center Distance (inch) 2.7953
Normal diametral pitch (1/inch) 12.05
Normal pressure angle (degree) 16.0

Helix angle (degree) 30.0

Profile contact ratio 2.02

Face contact ratio 1.13

Total contact ratio 3.15
Number of teeth 18 41
Face width (inch) 0.6 0.6
Outer diameter (inch) 2.0663 4.0057
Root diameter (inch) 1.5517 3.4911
Roll angle @ pitch circle 16.70° 16.70°
Roll angle @ outer circle 44.09° 22.44°
Roll angle @ SAP* 3.63° 4.68°

*SAP: The Start Radius of the Active Profile

The modification can be either linear or parabolic. Figure 9
shows a parabolic lead modification with no modification at the
center of the gear face and equal modifications at both end faces.
The total amount of profile modification will be the sum of the
lead modification and the tip relief.

Figure 10 shows the contour plot of the peak-to-peak
transmission error of the helical gears and the operating
conditions listed in Table 1. The plot assumes the parabolic
profile modifications with equal amounts of tip relief on the gear
and the pinion and a fixed 0.0003 inch parabolic lead
modification. The starting roll angle of modification on the gear
is varied proportionately with the pinion. The lowest contour,
12.5 micro inches, encloses the optimum profile modification
that minimizes the PPTE. However, the design is liable to
manufacturing and operational variations. The manufacturing
errors of the tip relief and the starting roll angle are
approximately 0.00015 inch and 1.5 degrees respectively, which
induce a significant variation of the performance.

Sundaresan et al. (1989, 1992) adopted Taguchi’s
orthogonal array and the Sensitivity Index (Equation 8) in the
optimization process to achieve a statistical optimum. The
statistical optimum shows a slight increase of the target PPTE
but greatly improves the worst case performance, which provides
a better overall quality than the conventional peak optimum.
However, Sundaresan methodology does not consider
interaction effects and the significant nonlinearity of

208

performance deviation. The nonlinearity of the performance
deviation drastically differs the target and the expected
performance. This study applies the proposed objective function
(Equation 11) and the Fractional Quadrature Factorial to seek the
Robust Optimum.

Peak-to-Peak Transmission Error

0.0015

r 0.00135

 0.0012

 0.00105

 0.0009

r 0.00075

{~ 0.0006

Amount of Tip Relief

[ 0.00045

 0.0003

r 0.00015

T T T T 0
SAP X f TIP

Starting Roll Angle of Modification

Figure 10. Contour plot of the PPTE for the helical gears in
Table 1

Robust Optimization for Gear Profile Modification

This study optimizes the peak-to-peak transmission error of
helical gears using the gear profile modification. Two case
studies based on two different variation models show the
flexibility and effectiveness of our methodology.

Case 1: Machined gears with small torque variation
Case 2: Machined gears with large torque variation

This study adopts the optimization program OPTPAK
(1990) and selects the Broydon-Fletcher-Goldfarb-Shanno
(BFGS) variable metric method (Vanderplaats, 1994) during the
search of optimum.

Case Study 1: Machined Gears with Small Torque
Variation. This study assumes independent variables. The
design ranges of the variables are as follows:

1) Starting roll angle of modification on the pinion ¢, from
the Start radius of Active Profile (SAP) to the tip of the
tooth.

Starting roll angle of modification on the gear ¢, from
SAP to the tip of the tooth.

Amount of tip relief on the pinion tooth dy,, from 0.0 to
0.0015".

Amount of tip relief on the gear tooth 7, from 0.0 to
0.0017".

Amount of lead modification , at both end faces of the
pinion tooth from 0.0 to 0.0005". The Ilead
modification was parabolic with zero at the center of the

2)
3)
4)

5)



face width. The amount of modification at both end
faces of the pinion tooth was assumed to be equal and
the gear tooth was unmodified in the lead direction.

The optimization considers four variations:

1) Variation of 0.00015 inch in the parabolic tip relief of
pinion and gear

2) Variation of 1.5 degrees in the starting roll angle of
pinion and gear

3) Torque (7)) variation of 200 lb-ins

4) Shaft misalignment d¢ of 0.0005 inch per inch of face
width.

Table 2 shows the design of experiment. Unlike full
factorial design which needs 64 experiments, this design uses
only nine experiments. The design allows us to investigate all
the six main effects if the interactions are negligible.

TABLE 2. FRACTIONAL FACTORIAL ARRAY #1 OF THE
GEAR DESIGN EXAMPLE
(Six main effects)

¢ o, b &, T &
26341 (IID) A B c D E F (AF)
(BD) (AD) (AE) (AB) (AC) (BC) (BE)
(CEj _(CH_(BF (EH) (DF) (DE) (CD)
Experi- R+ - - - - + +
ment  R2 + - - + - +
No. R3 - - + + - - +
R4 + + + + + + +
RS + + - + - - -
R6 + - + -+ - -
R7 - + + - - + -
RS - - - + + + -
R9 0 0 0 0 0 0 0

(T3}

Note: “+” represents the high level , “-” represents low
level, and “0” represents the middle level.

The variations of the PPTE due to the errors of the tip relief
and the starting roll angle are significantly nonlinear as shown in
Figure 9. The augmentation of the center point in our
experimental design estimates the combining effect of the
significant quadratic terms. The regression model of the PPTE
within the variations of parameters takes the following form:

PPTE=y+B;*A+B,*B+B;*C+B,D+ s *E+ B *F
+B, (44 B2+ CP+DY) (23)

Our experimental design adopts the Quadrature Factorial

which selects the quadrature points as experimental levels. This

study assumes normal variables, and the given variations

represent three times of the standard deviations.  The

corresponding high and low levels are y + 30, of each variable.

The Quality Coefficient B in the objective function
(Equation 11) is set at 2.0. The objective will represent the
highest PPTE of each design at the probability of 97.7% due to
the manufacturing and operational errors. Table 3 shows the
optimization results with the values of the design variables for
the peak optimum, the statistical optimum (Sundaresan, 1992),
and the robust optimum.
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The peak optimization leads to an inferior design since the
target PPTE does not represent the actual performance of the
design. For instance, the robust optimum though targets at a
higher PPTE, in fact, holds the lowest expected PPTE. The
actual performance distributes due to manufacturing and
operational variations. One should consider both the expected
response and the performance deviation. Our robust optimum
outperforms the statistical optimum, and improves the expected
PPTE by 45% and the performance deviation by 25% compared
with the peak optimum. Figure 11 shows the optimization
results graphically and indicates the worst PPTE of each design.

TABLE 3. COMPARISON OF THREE OPTIMUMS IN

CASE-1
PARAMETERS Peak Statistica ~ Robust
1
¢p (deg.) 11.45 16.57 14.41
¢g (deg.) 13.01 12.81 13.01
JTp (10'3 in) 1.175 1.053 1.051
5Tg (1073 in) 1.341 1.144 1.059
o, (10'3 in) 0.283 0.000 0.001
Target PPTE (M in) 5.84 10.00 10.61
Exp. PPTE (EP) (Min) 11.39 11.42 6.31
Dev. of PPTE (QI) (M in) 5.88 3.60 4.42
Objective Function
(EP+2*QI) (U in) 23.15 18.63 15.14
25
20

g 1 H 2xqu

g 10 4 Her

w

& 5]

o4
Peak Opt Statistical Robust Opt
Opt

Figure 11. Optimization results of Case-1

Case Study 2: Machined Gears with Large Torque
Variation. Sundaresan (1992) indicated that the misalignment

has little effect on the total performance deviation; however, the
interaction between tip relief and loading torque is significant.
When the variation of loading torque increases, the interaction
effect becomes notable. The variation model should thus include
the significant interaction terms. To investigate the interaction
effects using the same number of experiments, this case study
considers only three variations:

1) Variation 0of 0.00015 inch in the parabolic tip relief &, of
pinion and gear

2) Variation of 1.5 degrees in the starting roll angle ¢ of
pinion and gear

3) Torque (7) variation of 200 1b-ins



We select (2°-2) 2FFEC which allows the estimation of the
interaction effects of tip relief and torque. Table 4 shows the
arrangement of the L8 experimental array. The corresponding
regression model of the PPTE within the variations is as follows:

PPTE=Py+B,*A+B,*B+ B *C+B,D+Bs*E+B*BE

+B,*DE+B*(A?+B*+C*+D?) (24)

TABLE 4. FRACTIONAL FACTORIAL ARRAY #2 OF THE
GEAR DESIGN EXAMPLE
(Five main and two interaction effects)

¢p 5Tp ¢g 5Tg T 5Tg xT 5Tp xT
25241 (110 A B C D E DE BE
(BD) (AD) (AE) (AB) (AC) (BO) (CD)
(CE)
RI + - - - + +
o R2 - + - - + - +
Z R} - - + o+ - - +
2 R4+ + + + + +
g R5 + + - + - - -
’ E R6 + - + - + - -
% R7 - + + - - + -
o8 RS - - - + + + -
R9 0 0 0 0 0 0 0

Table 5 shows the optimization results and the values of the
design variables of the peak and robust optima. The robust
optimum improves the expected PPTE by 15% and the
performance deviation by 34% compared with the peak
optimum. Figure 12 shows that the statistical worst case of
PPTE could be as high as 22.3 micro-inches for the peak
optimum while only 16.8 micro-inches for the robust optimum.

TABLE 5. COMPARISON OF THE PEAK AND ROBUST
OPTIMUMS IN CASE-2

PARAMETERS Peak Robust
9, (deg.) 11.45 14.41
9, (deg.) 13.01 13.03
5, (1073 in) 1.175 1.051
Or, (103 in) 1.341 1.058
d, (1073 in) 0.283 0.000
Exp. PPTE (EP) (M in) 10.76 9.17
Dev. of PPTE (QI) (W in) 5.75 3.81
Objective Function

(EP+2*QI) (K in) 22.26 16.80
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Figure 12. Optimization results of Case-2

CONCLUSION

This paper proposed a methodology that incorporates
manufacturing errors and operational variations to seek the
robust optimum for designs involved with either complex
simulations or actual experiments. We introduced a new
objective function which consisted of an Expected Performance
(EP) and a weighted Quality Index (Qf). This definition
enhances the measure of optimality and robustness. The
procedure adapts the Fractional Quadrature Factorial to estimate
the expected performance and the standard deviation. This
technique greatly reduces the number of experiments and
provides superior estimation of design robustness even if the
system contains significant interaction effects and nonlinear
variations.

The paper presented an application of the proposed
methodology to the design of helical gears with minimum peak-
to-peak transmission error. The case study involved different
operational conditions which led to two variation models. The
proposed scheme readily accommodated the interaction effects
and generated the corresponding robust optimum which excelled
the previous study.

The current quadrature factorial assumed independent
normal or uniform variables. However, there are designs with
asymmetric distributions due to the transformation from
manufacturing process parameters to design variables. The
transformation could be nonlinear and induces complicated
distributions of design variables. Future study is to address the
transformation between manufacturing and design variables, and
derive the corresponding quadrature points. Future application
also includes the design of plastic gears where variation
correlation is significant due to material shrinkage.
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