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ABSTRACT

This paper addressed the parameter variations due to
interacting manufacturing errors and their impact to the design
robustness and constraint activity. Manufacturing errors often
affect design parameters with characteristic patterns which is
crucial to the determination of the output distribution. This
paper proposes the Manufacturing Variation Pattern (MVP) to
represent this variation characteristic and investigates the effects
of the level of correlation among design parameters. The
extension of the concept of MVP to the design optimization leads
to a feasible robust optimum which contains the superior
expected performance and the least sensitivity to the
manufacturing variations and constraint uncertainty. The design
of molded gears with minimum peak-to-peak transmission error
illustrates the application of the proposed algorithms. The
characteristic of the manufacturing process of molded gears
results in the correlation of dimensional parameters. Our design
scheme readily accommodates the variation correlation and
provides designs with significant reduction of the performance
deviation due to manufacturing and operational errors.

INTRODUCTION

Recent advances in quality engineering urge designers to
consider deviations of design variables in the early stages of
design. The deviations may result from uncertainties in the raw
material, manufacturing, and operation conditions. Quality
products should perform to specifications despite these
variations and have excellent attributes such as low cost, high
performance, etc. Traditionally, engineers conducted sensitivity
analysis after design optimization. Taguchi (1978) introduced
the concept of parameter design which  educes deviation in
performance by reducing the sensitivity of an engineering design
to sources of variations rather than controlling the sources.”

Chang (1989) and d’Entremont & Ragsdell (1988) adopted
Taguchi’s concept of quality-loss and cast the reliability of a
product performance into a nonlinear programming procedure.
Their goal is to minimize performance variability when the
design is constrained to have target performance. In contrast,
Sundaresan et al. (1991), Sandgren (1989), Eggert & Mayne
(1990), and Yu & Ishii (1993) integrated design performance
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and deviation into the objective function of optimization
procedure to seek the robust optimum.

On another front, Montgomery (1991) pointed out that
Taguchi’s approach to experimental design is weak in dealing
with potential interactions between controllable factors and that
his method of data analysis may confound location and
dispersion effects. D’Errico & Zaino (1988) also criticized that
Taguchi statistical tolerancing is not optimum, and proposed a
modified solution using the Gaussian-Hermite quadrature
integration.

Another challenge in robust design is dealing with
constraint uncertainties.  Design variables are subject to
manufacturing variations which result in constraint uncertainties.
Conventional actively constrained optimum may not be
statistically feasible. Parkinson et al. (1990) advocated a two-
step solution to modify the feasible region in constrained
optimization. Sundaresan et al. (1993) compared the efficiency
of three different methods which incorporate variations in
constraints. Most of these studies emphasized the propagating
errors of constraints using the simultaneous worst case of
parameter variations, and fell short in addressing the nature of
variations.

This paper focuses on parameter variations due to
interacting manufacturing errors. Manufacturing errors often
affect design variables with characteristic patterns. These
atterns” of manufacturing errors are particularly important in net
shape manufacturing, such as injection molding of gears. Here,
the dimensional error is largely due to shrinkage which
simultaneously affects multiple design variables.  Other
processes such as heat treatment distortion of transmission axles
and grinding of spiral bevel gears affect the critical dimensions in
a heavily coupled manner. One can no longer assume that
variations on multiple design variables are independent.
However, few studies address this issue of interdependency
among variations on variables and constraints.

Our study introduces the concept of Manufacturing
Variation Pattern (MVP) to characterize the coupled variations of
design variables. The shape of the variation pattern depends on
the distributions and the correlating levels of design variables.
Different designs and different manufacture processes have their



unique variation patterns. Yu & Ishii (1994) referred this
process as  atching the design to the manufacturing variation
patterns.” The performance variation within the pattern will
determine the design robustness. This paper develops an
algorithm to find the feasible robust optimum that matches the
pattern. The design of the molded helical gear with minimum
peak-to-peak transmission error serves as an example to illustrate
the utility of the proposed methodology.

REVIEW OF ROBUST OPTIMIZATION

Robust Optimization Modeling

Conventional constrained optimizations minimize the
nominal performance and take the following formulations:

Minimize y(X) (1)
Subject to g(X) <0 forj=12,..,] 2)
hy(X) =0 fork=1,2,..K 3)
X=(x), X3y x,)7 “)

x; represent design variables, such as geometry, material,
and manufacturing parameters, and often inherit variations. The
objective y(X) is a function of x; and will thus have a statistical
distribution. The design vector X is subject to inequality
constraints g;(X) and equality constraints h,(X) which also
contain uncertainty due to the variations of design variables.

Probabilistic optimization (Siddall, 1984) takes into
account of the uncertainties of design variables, and minimizes
the expected mean of the objective function.

)

Minimize

K, = B[R] = X[y()o [p(x) tux

p(X) is the joint probability function of X
0, is the standard deviation of y

where

However, probabilistic optimization will not guarantee a
satisfactory robust design which requires not only a optimum
expected performance but also a small performance deviation.
Yu & Ishii (1993) suggested the summation of the expected
performance and a weighted standard deviation as the object
function to seek the robust optimum.

F(X) =p+p*oy (6)
where s termed the Quality Coefficient

Estimations of Expected Mean and Variance

The evaluation of the objective function in the robust
optimization often requires the information of the expected
means and the variances of performance. The exact evaluations
involve an integration with the joint probability function of
control variables, that will be very computationally intensive.
Besides, the joint probability function is often unavailable. One
alternative using Taylor  expansion for independent variables
takes the following formulations:

Loyl O, 7
T y(M)+22|j0x, M% a’ @)
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However, the approximations require a closed-form model
of response. Ifthe designs involve either complex simulations or
experiments where simple system models are not available, the
evaluations of response derivatives become impractical. Yu
(1995) proposed the Fractional Quadrature Factorial Model
which combine fractional factorial and Gaussian-Hermite
integration to approximate response variations. Yu scheme
selects the quadrature points of the variable distribution as the
factorial levels, and applies a weighted sum of the fractional
factorial set to estimate the expected response and the
performance deviation.  This method provides superior
approximations even if the system contains significant
nonlinearity effects, and can be readily adapted to the case of
correlated variables.

p, = EP= ZW[); (€]
=y EO) (10
where N—3"
Wi=w*w,.. *w,

w; are the weightings of design variable x; at their
respective levels

EP (Expected Performance) is an estimate of
expected mean

DI (Deviation Index) is an estimate of the
standard deviation of performance

MANUFACTURING VARIATION PATTERNS
Definition

Manufacturing errors often induce statistical scatter to
design variables which may be independent or correlated. Most
robust design schemes to date use the worst case region (WCR)
to represent the variation space of design variables. The shape of
the WCR of a two dimensional problem is a rectangle as shown
in Figure 1(a). WCR specifies each variable by the individual
confidence interval and does not take into account the joint
distribution of the variables.

Consider two independent normal variables. Conventional
worst case regions use the Bonferroni method (Rawlings, 1988).
The overall confidence coefficient is the product of all the
univariate confidence coefficients. Figure 1(a) shows that the
intersection of two 97.5% univariate confidence intervals leads
to a rectangular region with a simultaneous confidence
coefficient of 0.95. However, it would be misleading if one
interprets the rectangular intersection as a joint confidence
region since some designs inside the pattern are unlikely
parameter combinations at the probability of 95%.

The variation pattern of design variables should represent
the possible combination of parameters at the specified
probability. Worst case region lacks the actual meaning of



statistical distribution. This paper proposes the concept of the
Manufacturing Variation Pattern as follows.

Def. 1: Manufacturing Variation Pattern (MVP)

Manufacturing Variation Pattern is a set of designs that
belong to the (1-a)* 100% joint confidence region of the
target design. MVP(1-a) denotes the space of possible
parameter combinations at the confidence coefficient of (1-
a) where a indicates the probability of the design outside
the variation pattern.

X2 A
95%

Xy
M#2.250, H+2.450,
(a) Worst case region (b) Uncorrelated MVP
X, A X2 A
|
\
Ho [~ T — ‘
\
[ \ \
\ \
- ‘ >
X3 My X1

(c) Perfectly correlated MVP (d) Positively correlated MVP
Figure 1. Worst case region vs. various Manufacturing Variation
Patterns

The distributions of the variables determine the shape of
MVP. MVP could be a rectangular solid ONLY if the
distributions of the design variables are uniform. However, in
many mass production environments, the variables assume
normal distributions. The corresponding MVP will be an
ellipsoid which will become a sphere with appropriate scaling of
the variables. The confidence coefficient (1-a) determines the
size of ellipsoid. Figure 1(b) shows the MVP(0.95) of two
independent normal variables. As one can see from the
overlapped patterns, the covered areas of WCR and MVP are
quite different even if the variables are independent.

Variation correlation changes the orthogonality of MVP. If
the variations are perfectly correlated, one can identify a
functional relationship between the variations of x.  The
corresponding MVP becomes a line or a curve as shown in
Figure 1(c). Partial correlation between variables changes the
MVP to an oblique ellipsoid. The slope of the axes of the
ellipsoid shows the direction of correlation between parameters.
Figure 1(d) shows a typical pattern for a positively correlated
MVP. Design robustness and feasibility are directly related to
the variation pattern of design variables. One should study the
correlation among variables to select the correct patterns, since
erroneous assumptions of the manufacturing variation patterns
will lead to inferior designs.
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Manufacturing Variation Patterns for Typical Processes

Orthogonal ellipsoid represents a typical variation pattern
for conventional manufacturing processes such as lathe-turning,
grinding, and milling. The distributions of the dimensions in the
axis directions of machining processes are mostly normal and
independent. Dimensions w and D of the lathe-turned shaft in
Figure 2 are typical examples.

However, certain post-machining process, such as heat
treatment, will change the independence among variables. For
instance, dimensions w and D of the shaft in Figure 2 will distort
after through hardening. The volume change due to the phase
transformation of constituent correlates the dimensional
distortions. However, interactions of thermal and transformation
stresses further complicate the relationship. According to
Ameen Rule (1940), dimensional changes resulting from
temperature induced stresses will cause the shape of a
component to become more spherical, which introduces a
negative correlation between w and D.

Figure 3 presents an actual variation pattern of a heat treated
spline shaft. The hardening processes consist of a furnace
heating at 1540°F and a solution quenching at 430°F. The shaft
is then tempered at 850°F to reach Brinell hardness 400-444.
The MVP clearly shows a negative correlation between the width
and the spline diameter over pins.

The dimensional changes of injection molded and die
casted parts have another correlation pattern. Volumetric
shrinkage v affects the dimensional changes of plastic part. Ifthe
material is homogeneous and the cooling and packing variations
are negligible, the linear shrinkage rate will be homogeneous and
approximately V. However, for more complex parts such as the
plastic module housing in Figure 4, the variations of packing
pressure, mold temperature, melt temperature, and the
interaction of geometric features become significant. The perfect
correlation among dimensions becomes obscure. Figure 5 shows
the MVP of the actual production measurements of the plastic
module housing. Dimension x; exhibits primarily linear
shrinkage, and dimension x, exhibits both linear shrinkage and
warpage. The oblique pattern shows a strong positive correlation
between x; and x,.

23.076" —T—92.375"

Figure 2. Example part of heat treated spline shaft
Number of teeth = 28, Diametral pitch = 8
Pressure angle = 25°
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Figure 3. MVP(0.95) for W and D of the heat treated shaft

Figure 4. Plastic module housing
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Figure 5 MVP(0.95) for x; and x, of the injection molded module
housing

Derivation of Manufacturing Variation Patterns

This study applies the multivariate statistical techniques to
derive the variation patterns. Typical mass production processes
usually have well-established statistical data of variable
distributions. Consider normal variables x; with means [; and
variance-covariance Oy, the formulation for the n dimensional
ellipsoid of the MVP(1-q) is as follows:

X=-M)'Z X -M)<S X} (11)
where X=[x,....,x,]"
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M= E[X],....,X,,]T = [ul’ uZ""’ I‘ln]T

> is the variance-covariance matrix

Xiw is the value of the chi-square value with n
degrees of freedom that leaves probability a
in the upper tail.

The axes of the confidence ellipsoids lie in the directions of the
eigenvectors, e;, of )". The lengths of the principal axes are equal

to ‘[)((zn’ oA; » where A; are the eigenvalues of }..

If the variables x; are independent, the formulation can be
simplified as follows:

! Dx,—u,[f 2
E —-t0 <
40 o, E_X‘”"”

(12)

The pattern corresponds to an orthogonal ellipsoid with the
lengths of the principal axes yX(,.,0;. In practice, we use the
sampling average }i to estimate U, and the sampling standard

deviation s; to estimate ;.

The correlation coefficient r;, measures the strength of the
linear association between two variables, x; and x;.

i (xij X )(xk/ -%)

S,
WE AT TS -
-J;-J; JZ(xg/_fi)zJZ(xk/ _)_Ck)z

=1 j=

(13)

If =0, it implies a lack of linear association between these
two variables. Otherwise, the sign of 7 indicates the direction of
the association. If ris close to 1 or -1, a linear relation may exist
between these two variables. Figure 6 shows the MVP(0.50) and
the MVP(0.95) of a bivariate normal example with common
variance. The confidence coefficient (1-a) determines the size,
and the correlation coefficient r;, affects the orthogonality
ellipticity of the pattern.

For variables with some other distributions or nonlinear
correlation, their MVPs will be much more complicated.
However, the central limit effect of statistics suggests that the
sampling distributions of many multivariate statistics are
approximately normal, regardless of the form of the parent
population. The variation patterns for other distributions will
exhibit in a similar manner.

MVP(0.95)

/ 24470

© MVP(0.5)

X2

1.1790

S |

Hy

Hy
(a) 0,=0,=0,r;,=0

Figure 6. MVP(0.50) and MVP(0.95) of a bivariate normal
example

(b) 0,=0,=0,r;,70.5



MANUFACTURING VARIATION PATTERNS AND
CONSTRAINED ROBUST OPTIMIZATION

Design Robustness

The design robustness is a function of expected mean and
performance deviation which are greatly affected by the variation
pattern of design variables. The proposed methodology
combines the concept of MVP and the Quadrature Factorial
Model to evaluate the objective function. The scheme better
estimates the design robustness which ensures a robust optimum.
The MVPs are orthogonal ellipsoids for independent normal
variables; thus we can directly apply equations (9) and (10) to
evaluate EP and DI. However, the MVP of correlated variables
will become oblique ellipsoid. One need to apply transformation
techniques to decouple the variables before the selection of
quadrature factorial. A transformation technique can decouple
the variables to identify the appropriate quadrature factorial.

The transformation between these coordinates is:

X=M+[e,e, Uk, 1Z (14)
where X = [xl """ ’xn]T’ zZ= [ZI """ ’Zn]T’ M= [ul’ ﬂz """ I‘ln]T
e; are the eigenvectors of the variance-covariance
matrix Y

The factorial experiments should select the quadrature
points along the Z axes as shown in Figure 7. The corresponding

high and low levels in terms of Z coordinates are i\/3/\, , where
A, are the eigenvalues of Y.

Figure 7. Transformation of factorial experiments to decouple
correlated MVP

Constraint Uncertainty

Manufacturing errors introduce deviations to design
variables and propagate to design constraints.  Robust
optimization uses statistic techniques to redefine equality and
inequality constraints. A design satisfies the equality constraint
h(X) if the expected mean of /,(X) is equal to zero. However,
the satisfaction of inequality constraints will present a
probability. A constrained optimum should be statistically
feasible regardless of constraint uncertainties. This paper
defines the robust feasibility as no constraint violation within the
MVP.

Conventional peak constrained optimum may contain a
large portion of unsatisfactory designs due to uncertainties
(Figure 8a). One alternative is to move the design to the worst
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case actively constrained point (Sundaresan et al, 1993) as
shown in Figure 8(b). However, the worst case region does not
capture the actual distribution of design variables. The
constrained solution may not be the true optimum as we examine
the overlay MVPs in Figure 8(b). The worst case actively
constrained design may be over or under constrained depending
on the actual variation patterns, which leads to inferior designs if
the performance is sensitive to the variations.

constraint g;(X) constraint g,(X)

Feasible
region

Feasible
region

constraint constraint

(a) Peak Active Constraints (b) Worst-case Active Constraints

constraint g,(X) constraint g,(X)

7 7
/Y 0 f{ g (0
’ Robust ’ Robust
‘ Feasible Feasible
) region - region
L %
constraint constraint

(c) Feasible Active Constraints
Uncorrelated MVP

(d) Feasible Active Constraints
Positive correlated MVP

Figure 8. Constraint activity for several variation patterns

Previous studies (Sundaresan et al., 1993; Parkinson ef al.,
1990) modified the feasible region using a first order Taylor
expansion to accommodate the ropagating variation” in

constraints:
g,(xb.)+i@m.so (15
J J s 0x’_ i
The modification becomes doubtful if significant

nonlinearity and variation correlation are present. In fact, the
constraints are deterministic, but the design variables scatter due
to manufacturing variations. = The overall probability of
feasibility is the real concern. Manufacturing Variation Patterns
provide a better explanation and quantification of constraint
uncertainty. This study formulates the constrained robust
optimization as follows:

Minimize F(X) =p+B*0y = EP+B*DI (16)
Subjectto Efh(X)] =0 for k=1,2,...K (17)
0X OMVP(1-a), g(X)<0,j=1,J (18)

where (1-a) is the confident coefficient of the MVP

Figures 8(c) & 8(d) illustrate examples of the Feasible
Active constraint. The definition of the Feasible Active
Constraint using MVP is as follows:



Def. 2: Feasible Active Constraint
For X7, with a given MVP(I-a), an i inequality
constraint g, is considered Feasible Active at the confidence
of (1-a)*100% if
1) OXOMVP(-a) , g(X)<0
2) OXOMVP(1-a) , g(X)=0

APPLICATION: MOLDED HELICAL GEARS WITH
MINIMUM TRANSMISSION ERROR

Background

Manufacturing errors and shape deformations of tooth
profile due to gear load, when coupled with the shaft
misalignment, increase the transmission error drastically. Gear
profile modification has been an effective technique to reduce
the peak-to-peak transmission error (PPTE) due to
manufacturing errors and the elastic deflection of gear teeth
under loads (Sundaresan, 1992). Robust optimum seeks the gear
designs with the least expected PPTE, while the performance is
less sensitive to profile errors, shaft misalignment, and load
variations (Yu, 1995).

Welbourn (1979) defined the transmission error as  he
difference between the actual position of the output gear and the
position it would occupy if the gear drive is perfect (infinite
stiffness and conjugate teeth).” The modifications enable the
unloading of one mating tooth pair when the second pair makes
initial contact, which lessens the sudden increase and decrease of
mesh stiffness and reduces the variation of transmission error.

Figure 9 illustrates the concept of profile modification.
This study uses the Load Distribution Program (1991) to predict
the transmission error. LDP characterizes the modification with
two parameters: 1) the starting roll angle

9= %&S 1
“\or, O

and 2) the amount of tip relief J

(19)

of the gear profile
modification. The modification can be either linear or parabolic.

.

\\ N/ab
o

Figure 9. Gear profile modification

VAN

Base circle

403

0.0015

r~ 0.00135
50

SS//

r 0.0012

r~ 0.00105

r~ 0.0009

r 0.00075

— 0.0006

Amount of Tip Relief

 0.00045
— 0.0003

r 0.00015

T T T 0
SAP \ / TIP

Starting Roll Angle of Modification

Figure 10. Contour plot of the peak-to-peak transmission errors

Figure 10 shows the contour plot of the peak-to-peak
transmission error of the helical gears used in the previous study
(Yu, 1995). The lowest contour, 12.5 micro inches, encloses the
optimum profile modification that minimizes the PPTE.
However, the design is liable to manufacturing and operational
variations. The manufacturing errors of the tip relief and the
starting roll angle are approximately 0.00015 inch and 1.5
degrees respectively, which induce a significant variation of the
performance.

Sundaresan et al. (1991) adopted Taguchi  orthogonal
array and the Sensitivity Index in the optimization process to
achieve a statistical optimum. The optimum shows a slight
increase of the nominal PPTE but greatly improves the worst
case performance, which provides a better overall quality than
the conventional peak optimum. However, Sundaresan did not
consider interaction effects and possible variation correlation of
molded parts such as plastic gears. The observation of Figure 10
suggests that any correlation between the tip relief and the
starting roll angle will result in an oblique MVP which
introduces different performance variations. The optimum
assuming independence of variables therefore become doubtful.
The application of our proposed design methodology extends the
study to the design of molded gears where geometric variables
correlate with each other due to material shrinkage.

The Profile Modification of Molded Gears Using Robust
Optimization

The profile modifications of molded gears will be
embedded in the mold designs. The distribution of part
dimensions is due to the variations of process variables such as
mold temperature, packing pressure, and cooling speed. The
dimensional variations are coupled because of the material
shrinkage, which introduces correlation among geometrical
variables. Processes, material properties, and feature
characteristics affect the correlation level and the variation
patterns.

This study considers the correlation between the tip relief
and the starting roll angle, and assumes the correlation
coefficient to be 0.7. To reduce the size of experiments, this



study also assumes the interaction effects are negligible and the
dimensional variations of gears and pinions are independent.
The design ranges of the variables are as follows:

1) Starting roll angle of modification on the pinion ¢, from
the Start radius of Active Profile (SAP) to the tip of the
tooth.

Starting roll angle of modification on the gear ¢, from
SAP to the tip of the tooth.

Amount of tip relief on the pinion tooth Jy, from 0.0 to
0.0015".

Amount of tip relief on the gear tooth J, from 0.0 to
0.0017".

Amount of lead modification ,, at both end faces of the
pinion tooth from 0.0 to 0.0005".  The Ilead
modification was parabolic with zero at the center of the
face width. The amount of modification at both end
faces of the pinion tooth was assumed to be equal. The
gear tooth was unmodified in the lead direction.

2)
3)
4)

5)

The optimization considers four variations:

1)

2)

Variation of 0.00015 inch in the parabolic tip relief of
pinion and gear

Variation of 1.5 degrees in the starting roll angle of
pinion and gear

Torque (7) variation of 200 1b-ins

Shaft misalignment & of 0.0005 inch per inch of face
width

3)
4)

The study selects the experimental design of 23 Fractional
Factorial augmented with center point. Unlike full factorial
design which needs 64 experiments, this design uses only nine
experiments. The design is of resolution III which allows us to
investigate all the six main effects if the interactions are
negligible. The augmentation of the center point in our
experimental design estimates the combining effect of the
significant quadratic terms (Yu, 1995). The variations of the
PPTE due to the errors of the tip relief and the starting roll angle
are significantly nonlinear as shown in the contour plot.

The design adopts the Quadrature Factorial which selects
the quadrature points as experimental levels. This study assumes
normal variables, and the given variations represent three times
of the standard deviations. The corresponding high and low
levels are p ++30, for independent variables. However, the
variations of tip relief and starting roll angle are correlated due to
material shrinkage. The quadrature points at the principal axes
of the MVP become the experimental setting of the tip relief and
the starting roll angle.

Table 1. Comparison of various optimization results

PARAMETERS Peak  Statistical  Robust
%, (deg.) 11.45 16.57 14.89
9, (deg.) 13.01 12.81 13.19
or, (1073 in) 1.175 1.053 0.998
Or, (1073 in) 1.341 1.144 1.000
d, (1073 in) 0.283 0.000 0.149
Target PPTE (M in) 5.84 10.00 16.48
Exp. PPTE (EP) (M in) 19.65 17.87 13.70
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Dev. of PPTE (QI) (M in)
Obj. = (EP+2*QI) (M in)
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Figure 11. Various optimization results

The Quality Coefficient of Equation (6) is set at 2.0 (Yu,
1995). This study selects the Broydon-Fletcher-Goldfarb-
Shanno (BFGS) variable metric method in the search of
optimum. Table 1 shows the optimization results. Peak
optimization uses the nominal PPTE as design objective and thus
has the lowest nominal value comparing with the robust
optimum. However, due to the system nonlinearity and the
correlation among design variables, the expected PPTE could be
quite different from the nominal value. The peak optimum
though contains the least nominal PPTE (5.48 Win), the expected
PPTE of the design is much higher (19.65 pin). The statistical
optimum using Sundaresan  procedure improves the design;
however, the Robust Optimum presents the lowest expected
PPTE and the lowest Deviation Index. Table 1 shows that the
Robust Optimum reduces the expected PPTE by 30% and the
performance deviation by 49% compared with the Peak
Optimum. Figure 11 shows that the statistical worst case of the
PPTE could be as high as 43.4 pin for the peak optimum while
only 25.8 pin for the robust optimum.

CONCLUSION

This paper addressed the parameter variations due to
interacting manufacturing errors and their impact to the design
robustness and constraint activity. The advocacy of the
Manufacturing Variation Pattern promotes the understanding of
the characteristics of manufacturing processes and the effect of
the levels of correlation among variables. The variation pattern
is crucial to the determination of design robustness. The
extension to the robust design concept led to a new definition of
constraint activity. The proposed algorithm provides a better
measure of design variations than the previous study which
assumed independence among the variations of design variables
and considered only the worst case within the tolerance space.

The design of molded helical gears with minimum Peak-
to-Peak transmission error illustrates our scheme of robust
optimization using the Manufacturing Variation Pattern. The
application of the concept of MVP in conjunction with the
Quadrature Factorial techniques better estimates the expected
PPTE and the performance deviation in spite of the correlation of
variation due to manufacturing processes. The robust optimum



not only contains the least expected PPTE but also the minimum
sensitivity to the manufacturing variations compared with the
results from the previous study.
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