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ABSTRACT

This paper presents a soft computing strategy to determine
the optimal die gap parison programming of extrusion blow
molding process. The design objective is to minimize part
weight subject to stress constraints. The finite-element software,
BlowSim, is used to simulate the parison extrusion and the
blow molding processes. However, the simulations are time
consuming, and minimizing the number of simulation becomes
an important issue. The proposed strategy, Fuzzy Neurd-
Taguchi and Genetic Algorithm (FUNTGA), first establishes a
back propagation network using Taguchi’ s experimental array
to predict the relationship between design variables and
response. Genetic algorithm is then applied to search for the
optimum design of parison programming. As the number of
training samplesis greatly reduced due to the use of orthogonal
arrays, the prediction accuracy of the neural network model is
closely related to the distance between sampling points and the
evolved designs. The Reliability Distance is proposed and
introduced to genetic algorithm using fuzzy rules to modify the
fitness function and thus improve search efficiency. This study
uses ANSY Sto find the stress distribution of blown parts under
loads. The comparison of results demonstrates the effectiveness
of the proposed strategy.

1. INTRODUCTION

Extruson blow molding is a low cost manufacturing
process for complex hollow parts [1]. The process can be
divided into several parts. First, the parison extrusion produces
a molten thermoplastic tube coming out from the die. Once
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extrusion is finished, the parison is clamped and high-pressure
air isblown into it to get the fina part. To control the parison
thickness over time, thereisamandrel that can move in and out
to thedie (Fig. 1). Obviously, the parison thickness controls the
thickness of the inflated part. To satisfy the part mechanical
performance, an adequate part thickness profile has to be
determined. The aim is then to find the optimal die gap
programming that will minimize the part weight and satisfy the
part mechanical performance as well.
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Fig. 1 The control of the parison thickness using the
parison programming.

The programming points are specified by the extrusion
time and the die gap opening of the parison. As the example
part shown in Fig. 2, we identify the die gap openings at 7
discrete extrusion times as the design variables: P(ty), P(ty),
P(ty), P(t3), P(ty), P(ts), and P(ts). These design variables will
be manipulated to satisfy the mechanica part performance
under service. For this case, the bottle part will be subjected to
two different types of loading, that is a top load displacement
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and an internal pressurization to ensure the mechanical
performance. The design objective is then to obtain a wall
thickness distribution of minima weight by manipulating the
die gap programming subject to a Von Mises stress distribution
that does not exceed the allowable level.
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Fig. 2 Programming points of parison extrusion.

Extrusion blow molding involves complex processes such
as parison extrusion, clamping, blow up, and cooling. Leeet a.
[4] used afinite element model of thin film to simulate blow
molding processes, and applied the feasi ble direction method to
minimize the parison volume at the constraints of part thickness.
Diraddo et d. [2] established a neura network to predict the
distribution of parison thickness and applied Newton-Raphson
method to obtain the final blow molded part specifications [3].
However, the investigation of the relationship between design
variables and the wall thickness distribution of blown parts
requires expensive experiments and time-consuming
simulations. To reduce the number of experiments and
simulations, an efficient strategy of data analysisis essential.

In this study, we apply an optimization strategy based on
Taguchi’ s method [5] and soft computing techniques [6] to the
optimization of parison programming to obtain the thickness
distribution of minimum weight. The finite element software,
BlowSim, is used to simulate the parison extrusion and the
blow molding pocesses. From a part thickness distribution
obtained from BlowSim, ANSY S software is used to make the
structural analysis for the two types of loading specified. The
proposed strategy establishes a local neural network based on
Taguchi’ s orthogonal array experiments and assumes the fuzzy
inference to genetic algorithm to search for the optimal
operating conditions.

2. OPTIMIZATION STRATEGY

Taguchi’ s method has proven its efficiency and simplicity
in parameter design. The proposed optimization strategy,
FUzzy Neura-Taguchi with Genetic Algorithm (FUNTGA),
applies Taguchi’ s experimental design to the training and

testing of a neural network model. The trained network
becomes the function generator of the design fitness in the
Genetic Algorithm. The optimum search wsing GA enhances
the possibility for a better design than the conventional analysis
of means (ANOM). A fuzzy inference of engineering
knowledge is introduced to enhance the searching efficiency of
GA. The flowchart of the optimization strategy isillustrated in
Fig. 3.
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Fig. 3 The Optimization flowchart of FUNTGA.

2.1. Taguchi’s Method

Inspired from statistical factorial experiments, Taguchi’ s
method features orthogonal arrays and analysis of mean
(ANOM) to andyze the effects of design variables. Each
variable is assumed to have finite levels (set points), such as
two or three levels, within the investigating range. The
orthogonal array is a type of fractional factorial experiments.
The application of orthogona arrays reduces the number of
experiments, which is particular effective for design
optimization involving expensive experiments or time
consuming simulations. For instance, instead of 27
experiments for three 3-level full factorial experiments, the L9
orthogona array selects only nine treatments. ANOM study of
experiment results reveals the effects of design parametersthat
are used to determine the optima level of each parameter.
Knowing that Taguchi’s result is not a global optimum,
however iterations of Taguchi’ s method can provide a solution
near to the optimum design.
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Fig. 4 Full factorial and fractional factorial experiments for
three variables

Taguchi’ s approach utilizes ANOM of fractional factoria
experiments to predict the optimal design of the full factorial
experiments. However, the prediction of the optimal design is
sendgitive to the selection of factorial levels and interaction
effects. Also, the restriction of parameter values to factorial
levels reduces the possibility of having better designs between
preset levels.

2.2. Neural-Taguchi network

Neural network technologies are effective in process
control. The network is used to set up a simulation model for a
complex nonlinear system.  Fig. 5 represents a back-
propagation network that consists of an input layer, a hidden
layer and an output layer. The back propagation network is a
type of supervised learning networks. Sampling data are
divided into learning and testing samples. Learning samples
are used to determine the weighting matrices, W; and Wjo,
among neurons and testing samples to determine the accuracy
and the generality of the network.
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Fig. 5 Back-Propagation network.

Training samples are essentia to the prediction qudity of
network models. This study employs Taguchi’ s experimental
design to select training samples to reduce the number of
experiments and to maintain a good sample representation [7]
[9]. The steepest gradient method is assumed to train the
welghting matrices. The verification experiment of the optimal
design from the ANOM study will serve as a testing sample.
The trained network can accurately predict responses for the
parameter designs between factoria levels.  Significant
interactions often introduce complexity to experimental design

and lead to erroneous prediction of optima factoria levels.
The network mode can resolve interaction effects among
variables. These features enablethe network to explore a better
design as compared with Taguchi’ s additive model.

2.3. The search for the optimum of the Neural-
Taguchi network

The trained Neura -Taguchi network can predict responses
for the parameter combinations in the investigating range.
Generic Algorithm is thus applied to search for the optimum. |If
the verification result of the predicted optimum is not
satisfactory, the design will be used as an initial design and
another set of orthogona array experiments will be conducted.
The results will be served as additional testing data for the
network. The iteration process stops when the predicted
optimum obtained from GA and the network converges.

The Neura -Taguchi network replaces Taguchi’ s additive
model to predict design outputs. The search for the optimum in
the investigating range using GA will explore the possibility of
better designs other than factoria points. However, the
application of orthogonal arrays significantly reduces the
number of training samples as compared with conventional
random sampling. Owirg to that better prediction accuracy will
exist around sampling points, our approach introduces a fuzzy
inference to steer the search direction of GA.

2.3.1. Normalization of design parameters

To facilitate the calculation of the distance among designs,
the vaues of the set points of continuous variable X, are
normalized to z using the following transformation

(max( %) +min( x,))6

2 2 (2)
admax(,) - min( %))
e 2 @

x
&
Z, =

where max(x) represents the maximum and min(x,)
represents the minimum values of the factoria varigble X.
Thus the normalized factorial values of an equal spaced three-
level continuous variable, x;, will become (z, 2, 73 = (-1, 0,
1). For discrete variables, the factoria vaues are equally
assigned between -1 and +1.

2.3.2. The Reliability Distance

The factorial distances between predictive designs, D;, and
the sample data § are defined asfollows

05

él1d u
r = éﬁa (Dik - Sjk)ZQ (2
el k=1 u

where n represents the number of variables.

Since predictions around the sampling points of the trained
network will have higher accuracy, we proposed to use the
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Reliability Distance of a predictive design as the minimum
factorial distance between the prediction and sampling data.

RD; = min( rij) (3
Smaler RD results in higher prediction accuracy. Also,

the distance of an interpolating design is assumed negative and
the distance of an extrapolating design is assumed positive. For

instance, the Reliability Distance of D, in Fig. 6 is negative and
the Reliability Distance of D, is positive.
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Fig. 6 The factorial distances of predicted designs.

2.3.3. The fuzzy rules of prediction accuracy

The Rdiability Distance of a predictive design determines
the prediction accuracy of the design. The reliability of the
predicted design decreases when the absolute value of RD
increases. Also, the reliability of extrapolating designs is often
much worse than the interpolating designs. Based on the above
characteristics of neural network, we propose to use fuzzy rules
of the design reliability asfollows

R1: If RD isPB then prediction reliability is Bad

R2: If RD is PM then prediction reliability is Poor

R3: If RD is PS then prediction rdiability is Fair

R4: If RD is ZE then prediction reliability is Excellent
R5: If RD isNSthen prediction reliability is Excellent
R6: If RD isNM then prediction reliability is Good
R7: If RD isNB then prediction riability is Fair

Seven levels are defined to describe the condition variables:
PB(Positive Big), PM(Positive Medium), PS(Positive Small),
ZE(Zero), NS(Negative Small), Negative Medium (NM), and
NB(Negative Big). Five levels are defined to describe the
assessment  results: Excellent, Good, Fair, Poor, and Bad.
Standard membership functions associated with these
statements areillustrated in Fig. 7 and Fig. 8.
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Fig. 7 Membership functions of condition variables.
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Fig. 8 Membership functions of assessment variables.

3. OPTIMIZATION OF BLOW MOLDING
PARAMETERS

This work uses the proposed optimization strategy to get
the optima parameter design of extrusion blow molding
process for the High Density Polyethylene (HDPE) bottle case.
Two types of loading will be investigated: an interna
pressurization at 110 (psi) and a top displacement of 5 (mm)
during 5 seconds as illugtrated in Fig. 9. The maximum
alowable stress, corresponding to the ultimate tensile strength
of the materidl, is set to 33 MPa. For thismaterial, theYoung' s
modulus is 879 MPa and we assume that the thickness part
shrinkage is 3%.

R,

E

%

q
'a"‘
o
ot

[

o
ALV AT AV AN VAV AV AN

VAV AT AWAT AT AT APAVAN
T A A A AT AT

L

Al
P
i
1ty
k-
bl
e
by
i
ot
[T
s
Pl

FAYATAYANANLYL
EYAVAVAVAVAVAVLY

AT

Fig. 9 The mechanical loading of the blown bottle: internal
pressurization and top displacement.

3.1. Objective Function

The design objective isto minimize the part weight subject
to stress constraints of the bottle under loadings. The reduction
of an element thickness results in the increase of its stress level.
Consequently, the design objective can be replaced by a
minimization of the stress variance around the stress mean
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close to the stress congtraint. The smaller variance of the stress
distribution, the closer the mean can be moved to the allowable
material strength, that leads to thinner elements, and thus
minimal part weight. However, any element stress exceeding
the alowable strength might result in part failure. In thiswork
the constrained optimization is replaced by an unconstrained
minimization of the variance of stress distribution around the
dlowable stress level using the external penalty method as
illustrated in Fig. 10.
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Fig. 10 lllustration of the design objective

The objective function (Eg. [4]) contains two portions. the
quality loss due to variation of stress distribution and the
penalty loss due to constraint violation

a-1° @
MOBJ :'ﬂT+a <t -T>?
i=1

where t; stands for the stress of node i, T for the allowable
strength of material and n represents the total number of nodes
of the simulation model.

The quality loss due to variation of stress distribution is
estimated by the mean squared deviation of the element stress
from the allowable stress level. The average quality loss can be
divided into two parts: the deviation of the mean stressfrom the
allowable strength and the variation of the stress around mean.

- T)? Al -t
(T ) [ —
n n

X QJO::

2 (5
—E-T) +(n-l)s ®)
n
where T is the mean stressand ¢ is the sampling variance.
Reducing the quality loss leads to a stress distribution of a
smaller variance and a mean stress closer to the allowable
strength.

The second portion of the modified objective function, the
pendty loss, is estimated using a second order singularity
function.

Oif t, £ET 6)
(t-T)%ift >T

<t-T>?

This portion accounts for the penalty of elements violating the
stress constraint.

The search for the design of minimum objective function
will provide a thickness of minimum pat weight while
satisfying the stress requirement.

3.2. Taguchi’ s parameter design

3.2.1. Experimental Design

As dtated in Fig. 2, the die gap openings at 7 discrete
extrusion times are selected as the control factors: P'(tg), P(ty),
P\(t,), P'(ts), P'(t), P'(ts), and P'(ts). The design optimization
manipulates the die gap openings of programming points to
obtain a thickness distribution that will satisfy the mechanical
performance

Theinitial design adoptsa uniform die gap opening of 75%.
The L18 orthogonal array is selected as the experimental design
(Table 1). For each opening, we assume athreelevels variation
around the initial design located in the middle of the design
space. The range between upper and lower levelsrepresents the
design space. We assume 40% variation range. The objective
function is converted to Taguchi’s Signa-to-Nase ratio
(S/N_ratio) to improve the prediction accuracy using ANOM’ s
superposition model.

S/N _ratio=-10" log{ MOBJ ) (7

Table 1. L18orthogonal array

A B C D E F G Objective SN

L1 P(to) P(t) P(t) P(ts) P(t;) P(ts) P(t) Function ratio
1 55 5 5 5 5 5 55 456.5 -26.59
2 5 7% 7 7% 75 75 75 385.2 -25.86
3 5 96 96 9B B 9B 5 508.8 -27.07
4 75 5 5 75 75 9% 95 14188.3 -41.52
5 7% 7 75 9% 9% 55 55 71641 -3855
6 7 9% 9 55 55 75 75 30362 -34.82
7 9% 5 7 5 9% 7 96 29572 -3471
8 9% 75 9% 75 55 95 55 13883 -3142
9 9% 9% 5 96 7B 5 75 475.7 -26.77
10 5 5 9 96 75 75 55 321829 -4508
11 5 75 5 5 9 9% 75 22636 -3355
12 5 96 7 7 5 5 9 930.4 -29.69
13 7 5 75 9% 55 9% 75 110219 -40.42
14 7w 7% 9% 5 7B 5 95 653.9 -28.16
15 7w 9% 5 7B 9% 7 55 723.8 -2860
16 9% 5 9 7 95 55 75 241375 -4383
17 9% 75 5 9% 55 7 95 918.0 -29.63
18 9% 9 75 55 75 9% 55 23430 -3370
Inital 75 7% 75 75 75 75 75 368.8 -25.67
AOM 55 9 55 5 55 55 95 555.6 -27.45

3.2.2. Parameter design

Taguchi’ s method applies the analysis of means (ANOM)
to estimate parameter sensitivities. Fig. 11 represents the factor
effects for each die opening on the SN ratio. A design with
higher S/N ratio has a smdler value of the objective function.
An additive model based on ANOM can be formulated:
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SIN=m+A +B, +C, +D, +E, +F; +G, )

The additive modd estimates the optimum treatment
combination to be A;B;C,DE;F.G;. The BlowSim simulation
result of the optimum in Table 1 presents that Taguchi’ s
method doesn’t provide a better result than the initial design.
The failure of Taguchi’s approach might due to interactions
among design variables and strong system non-linearity.
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Fig. 11 Factor dfectsplot of control variables.

3.3. Design optimization using FUNTGA

3.3.1. Establishment of neural network

FUNTGA provides a more efficient and accurate optimum
search using the same experimenta data of Taguchi’'s
experiments. The L18 orthogonal experiments are used as
training samples for the Back Propagation Network (BPN) of
the extruson blow molding process. The initial design and
Taguchi’ s optimum design are used as testing samples for the
trained network. There are 14 neurons in the first hidden layer
and 6 neurons in the second hidden layer. The initial learning
rate is set to 1.4 and the initidl momentum term is set to 0.5.
The RMS error reduces to 0.055 after 16000 epochs.

3.3.2.  Optimum search using GA

The fitness function is defined as the negation of the
modified objective function of Eq. (4). The trained network will
then be used as the function generator for each chromosome
combination. The parameters of Genetic Algorithm used in this
study are listed in Table 2. The fuzzy rules for prediction
accuracy are applied to GA to improve the searching efficiency.
The optimum chromosome is presented in Table 3.

Table 2 Genetic Algorithm parameters

Population Pool Scae  Cross Mutation Max
sze selection dyle Over rate iteration
syle rate
60 Parentand  Linear 0.8 0.01 300

offspring scae

Table 3 FUNTGA' s optimum

Objective

Pl) P) P) Pty P) Pl Pl _ .

FUNTGA' s

Optimum 50.7 856 749 835 76.0 585 70.6 327.2

3.4. Comparison of results

Figure 12 compares the profiles of optimal die gap
openings of parison programming and Table 4 compares the
stress digtributions of the initial design and the optimal one
obtained from Taguchi’s method and FUNTGA strategy.
Taguchi’s ANOM approach is disturbed by parameter
interactions and system non-linearity. Taguchi’s optimum
provides amean stress closer to the alowable strength 33 MPa.
However, the large variance of the stress distribution results in
stronger violation of stress constraints than the initial design.
FUNTGA' s optimum exhibits a mean thickness close to the
alowable and the smallest deviation in three designs, which
leads to a design of smaller weight while satisfying the stress
congtraints. Figure 13 presents the stressdistributions of three
designs.
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Fig. 12 The optimal designs from various methods
Table 4 The comparison of various optima.
Mean  Std.Dev. g Penalty Objective
Stress Stress Qe e Loss  Function
Initial 159 6.4 335.1 337 368. 8
Taguchi’ s 16.6 7.3 322.4 233.2 555.6
FUNTGA' s 16.0 6.1 324.9 2.3 327.2
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Fig. 13 The comparison of the stress distribution.

4. Conclusions

This study presents how to apply soft computing
technology to determine the optimum die gap openings of
parison programming of extrusion blow molding process.
Taguchi’ s method is cost effective to obtain an improved
design in a few experiments. However, possible interactions
among parameters and system non-linearity could complicate
parameter design. Instead of using ANOM of Taguchi’s
experimental design, a back propagation network is established
using Taguchi’ s experimental data. Heuristic knowledge of
prediction accuracy is applied to GA using fuzzy rules to steer
the search direction. The proposed strategy works well with the
bottle example. The comparison of results demonstrates the
effectiveness of the proposed strategy. Extra iterations using
FUNTGA'’s approach are possible if further improvement is
desired. The previoudy derived optimum can be assumed as an
initial design, and another orthogonal array experiments can be
conducted. The new experimental datawill then be added to the
training samples of the neura mode to further improve the
accuracy.
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