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ABSTRACT

Design parameters are subject to variations of
manufactures, environments, and applications, which
result in output deviations and constraint uncertainties.
Quality products must perform to specifications despite these
variations.  Conventional constrained optimum may not be
statistically feasible due to design variations.  This paper
addresses design variation characteristics and proposes a
design procedure to ensure feasibility robustness in
design optimization.  Product life cycles often affect
design variables with characteristic patterns.  The Design
Variation Hyper Sphere (DVHS) is presented using the
concept of statistical joint confidence regions and
decoupling techniques to characterize the coupled variations
of design variables.  The pattern represents the possible
design dispersions at a specified probability, which is a hyper
sphere for normal variables.  The radius of the hyper sphere is
determined by the feasibility requirement.  The proposed
robust optimization algorithm, SROP, introduces DVHS
to the sequential quadratic programming, and modifies
the feasible region to accommodate the activity
uncertainty.  The procedure ensures the design
feasibility without over sacrificing the performance
optimality.  The design of a helical spring serves as an
illustrative example of the proposed procedure.

Keywords: Variation Hyper Sphere, Taguchi, Constraint
Uncertainty, Statistical Optimization, Robust
Design, Sequential Quadratic Programming,

1. INTRODUCTION
Variations of manufacture, environment, and

application cause design parameters to deviate from

nominal values, which introduce performance
fluctuations.  Conventional engineering opts to use
tolerance control to reduce the output deviation, which,
however, often leads to a higher manufacturing cost.
Quality design should deliver the target performance
despite these variations.

Parameter design, advocated by Taguchi [1], minimizes
the performance sensitivity to variations rather than controlling
the sources.  Taguchi’s method features signal-to-noise ratio,
orthogonal array experiments, and analysis of variance to
perform a two-step design optimization.  Many studies apply
Taguchi’s concept to nonlinear programming problems to
minimize the variations of nominal optimum.  d’Entremont &
Ragsdell [2] adopted the concept of quality-loss to modify the
objective function.  Sandgren [3] and Sundaresan et al. [4]
formulated the design objective as functions of weighed mean
and deviation of performance.  However, Taguchi’s approach
to experimental design does not clearly address potential
interactions between controllable factors, which might result in
estimation errors of performance tolerance.  D’Errico & Zaino
[5] presented a modified approximation using the Gaussian-
Hermite quadrature integration.  Yu & Ishii [6] proposed the
Fractional Quadrature Factorial to estimate the performance
mean and the robustness for applications with significant
interaction and nonlinear effects.

The constraint uncertainty due to parameter variations is
another issue in robust optimization. The conventional, actively
constrained, optimum may not be statistically feasible.
Parkinson et al. [7] explored the influence of correlated
constraints on feasibility and advocated a two-step solution to
modify the feasible region.  Sundaresan et al. [8] compared
the efficiency of three different methods that incorporate
variations in constraints.  Most of these studies use worst-case
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analysis and fall short of addressing the variation
characteristics.  Yu & Ishii [9] proposed the concept of
Manufacturing Variation Patterns (MVP) to characterize the
coupled variations of design variables.  The recognition of
variation patterns is essential to the estimate of performance
distribution and design feasibility in design optimization.

This paper investigates the influence of correlated
variations on the identification of a constrained optimum.
The concept of MVP is extended to include the variations of
controllable variables and uncontrollable parameters
throughout the product life cycle.  Manufacturing errors,
operation temperature, and mechanical wear often affect design
variables with characteristic patterns.  The assumption of
independence among variables is no longer valid.  The
“variation pattern” will affect the performance and feasibility
robustness of a constrained optimum.  This paper aims to
develop an algorithm to identify the constrained robust
optimum based on the pattern.

2. ROBUST OPTIMIZATION
Engineering optimization seeks the design with the

best objective in the feasible region.    Design objective
and constraints are functions of design variables that are
subject to product life cycle variations.  The nominal optimum
may not contain the best mean objective and the least
sensitivity to design variations.  Also, product life cycle
variations affect constraint activity.  The conventional
optimum with active constraints is not statistically feasible.
There will be a large portion of unsatisfactory occurrence when
the design is in production.  Therefore, the robust optimum
should consider the two following issues:

(1) Feasibility Robustness

A constrained optimum should assure feasibility
despite parameter variations.  One resolution is to
move the design toward the feasible region.  The
moving distance is determined by the acceptable
probability of infeasible occurrence.  The joint
distribution region of design variables could represent
the design variation pattern, which often appear as an
ellipsoid [9].  The shape of the variation pattern
depends on the correlation levels of design variables and
the distribution probability inside the pattern.  The locus
of the centroid of the variation pattern tangent to the nominal
inequality constraint gi(X) composes the Robust Inequality
Constraint gi

R (X).  Confining the designs inside the modified
feasible region bound with gi

R (X) in the search process will
provide designs with feasibility robustness (Figure 1).

(2) Performance Robustness

A robust optimum requires the best mean objective and the
least sensitivity to design variations.  A conventional search
for an optimum considers only nominal output.  However, the
use of output mean and deviation can better describe output
characteristics.  Figure 2 shows that design x1 has a

smaller nominal output but much larger output deviation
than design x2.  In other words, design x2 has less
sensitivity to variation than design x1.  Besides, the
mean output and the nominal output may differ in case
of asymmetric distribution as shown in y3n of Figure 2.
Optimization of nominal output will not ensure
performance quality.  The modified objective function
consisting of output mean and deviation is an intuitive
approach for performance robustness.
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Figure 1. Modification of constraint using design variation
pattern
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Figure 2. Output distributions of various designs

3. DESIGN VARIATION PATTERN
Manufacturing errors and application diversities

often induce the dispersion of design variables with
characteristic patterns.  Here, the design variables include
controllable variables whose values can be selected by
designers and uncontrollable parameters whose values are
fixed as part of the specifications.  Conventional worst case
regions (WCR) assume independence of design variables,
which fails to explain correlated dispersions.  The dispersion
pattern should be the possible combination of the variables at
the specified probability.  The Design Variation Pattern
(DVP) extends the concept of Manufacturing Variation
Pattern [9] and uses the statistical joint confidence
region to characterize the coupled variations of design
variables.

The shapes of DVP are affected by the various
factors in a product life cycle such as manufacturing
processes and application temperatures.  These
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“variation patterns” are particularly important in net shape
manufacturing and heat treated parts where the dimensional
errors are largely due to material shrinkage that simultaneously
affects multiple variables.  Most literature uses the worst
case region (WCR) to describe the distribution of design
variables [7,8].  The shape of WCR is a rectangular-
hyper-solid, which neglects the possible correlation
among variables. The corners of WCR, which represent
the distribution with extreme low possibility of
occurrence, might lead to over conservative design in
constrained problems.  This paper applies statistical
multivariate regression to derive the confidence region
of design variation.  Figure 3(b) is an example of DVP of
two independent variables.
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Figure 3. Typical distribution patterns for WCR and DVP

Different product life cycles introduce variations to
design variables X.  (Eq. 1) and (Eq. 2) represent the
variance-covariance matrix and the correlation efficient.
The correlation coefficient ρij measures the strength of the
linear association between two variables, xi and xj.
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where X=(x1, ….xp)T

( ) ( ) ( )[ ] [ ]T
p

T
pc xExpxExpxExpX µµµ ,,,,,, 2121 ==

jjii

ji
ij

  

 

σσ

σ
ρ = (Eq. 2)

If xi are normal, and their means µ i and the
covariance matrix Σ are given, (X- Xc)T Σ -1(X- Xc) is
Chi-square distributed [10].  The boundary of the
(1-α)×100% confidence region of X is defined as Design
Variation Pattern, denoted DVP(1-α).
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1
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T
c XXXX =−Σ− − (Eq. 3)

where 2
,αχ p  is the chi-square value of p degrees of freedom,

which leaves α ×100% in the upper tail of distribution.

The left side of (Eq. 3) can be reformulated as follows

using matrix operations:

(Y-Yc)T Λ-1(Y-Yc) = χ αp ,
2

(Eq. 4)
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ie  is the unit eigenvectors of matrix Σ

iλ  is the eigenvalues of matrix Σ
The function of DVP can then be represented as

follows:
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Equation (Eq. 5) reveals that DVP is an ellipsoid
centered at Xc.  The axes of the ellipsoid lie in the direction of
the eigenvectors, ie , of Σ.  Τhe length of the principal axes are

equal to ip λχ α
2

, , where λ i are the eigenvalues of Σ and α is
the confidence level.  Figure 4 shows a DVP of two correlated
variables.  The size of DVP increases with the requirement of
confidence (1-α)×100%.  The correlation among design
variables will make DVP an oblique ellipsoid.  The
correlation level affects the tile direction.

x 1

x 2

O µ1

µ2

λ 1χ
2,α

2

λ
2 χ

2,α
2

y c1

y c2

y 1

y2

1e2e

Figure 4. Typical shape of two-dimensional DVP

4. DESIGN VARIATION HYPER-SPHERE
To ensure feasibility robustness, inequality constraints are

modified toward feasible regions according to DVP (Figure 1).
The shape of DVP varies with the correlation level among
variables.  The distance between the nominal design and the
boundary of the variation pattern is not constant, which
increases the computational difficulty to determine constraint
modification.  Our scheme adopts the coordination
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transformation to decouple the correlation and to transform the
varying “statistical variation distance” to a uniform “Design
Variation Radius”.  The result will greatly simplify the
process of constraint modification.  Since covariance
matrix Σ is real symmetric, there exists an orthogonal
matrix E to diagonalize Σ.

Λ=Σ=Σ− EEEE T1

TEEΛ=Σ (Eq. 6)

where the definitions of E and Λ are the same as in (Eq. 4)

Reformulate the function of DVP (Eq. 3) using (Eq. 6).
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(Eq. 7)

Σ is positive definite due to the properties of real
symmetric matrices.  Therefore, the diagonal elements of
matrix Λ are all positive real.  There exists a diagonal matrix
V, such that

Λ =VV (Eq. 8)
Let Y=ETX and substitute (Eq. 8) into (Eq. 7).
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(Eq. 9)

Define the standardized variables Z

XEVYVZ T11 −− == (Eq. 10)
X=EVZ (Eq. 11)
The DVP is reformulated as a function of variable Z, which is.

( ) ( ) 2
,αχ pc

T
c ZZZZ =−− (Eq. 12)

Zc is the standardized value of nominal design Xc that is
also the means of X.  The variation pattern in the standardized
Z domain becomes a hyper-sphere that represents the variation
space of design Zc.  (Eq. 12) is defined as the Design

Variation Hyper-Sphere (DVHS) centered at Zc.  2
,αχ p  is

termed the Design Variation Radius at the confidence of
(1-α)×100%.

5. DESIGN OPTIMIZATION FOR FEASIBILITY
ROBUSTNESS

 Life-cycle variations introduce dispersions to design
variables and propagate to design constraints.  Robust
optimization applies statistical techniques to refine the
definitions of equality and inequality constraints.  A
constrained optimum should be statistically feasible regardless
of the possible dispersion of design variables (Figure 1).  In
other words, feasibility robustness requires no constraint
violation for the entire design variation pattern.  Two-stage
optimization is often used to ensure feasibility.  After locating
the nominal optimum, the second stage of optimization

modifies design constraints to accommodate parameter
variations, and searches for the robust optimum in the modified
feasible region. The amount of modification depends on the
shape of the variation pattern that is an ellipsoid for normal
variables.

 If the variation distance is constant despite the
orientation of design, the modification process will be greatly
simplified.  This paper applies the concept of Design
Variation Hyper-Sphere (DVHS) to sequential quadratic
programming, and proposes the algorithm of Sequential Robust
Optimization.  The algorithm can readily apply to the two-
stage optimization or search for the constrained optimum
directly.

5.1. Sequential Quadratic Optimization for
Feasibility Robustness

 Sequential quadratic programming (SQP) linearizes the
constraint function at the initial design using the first order
Taylor’s expansion.  The objective function, on the other hand,
is approximated using a second order Taylor’s expansion.
The optimum of the simplified problem can be solved for much
easily.  The process iterates the new design until the
convergence of the result, which will approach the constrained
optimum of the nonlinear problem.

 The proposed scheme of Sequential Quadratic
Optimization for feasibility robustness modifies the linearized
constraints in SQP to accommodate the design variations.
The first step is to derive the DVHS from the statistical design
data.  The constraints and the objective are transformed to the
functions of standardized variables Z.

f(X)=f[p(Z)]=F(Z) (Eq. 13)

gi(X)=gi[p(Z)]=Gi(Z) (Eq. 14)
where X=p(Z)=EVZ

Z=[z1, z2, …, zp]T

The Design Variation Radius is introduced to SQP to
modify the linearized constraints to ensure feasibility
robustness.  The modification process is as follows:

The standardized constraints Gi(Z) are linearized at initial
design Z0.

( ) ( ) ( ) ( )000 ZGZZZGZG i
T

iiL +−∇= (Eq. 15)

The linearized constraints GiL(Z) offset along the gradient
direction, ( )0ZGi∇ , for variation radius r.  As shown in
Figure 5, all the points Z on GiL(Z) and the corresponding
points ZR on the shifted line )( R

R
iL ZG  have the following

relation.
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where Z0 is the initial design
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r is the Design Variation Radius of the DVHS
ZR is the set of points on GiL(Z) offset along the

negative gradient direction for the distance of r.

Substitute (Eq. 16) into (Eq. 15) and the linearized constraint
after modification is:
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Since ZR is only a variable, we can replace ZR with Z and
simplify the equation as follows:

( ) ( ) ( ) ( ) ( )0000 ZGZGrZZZGZG ii
T

i
R
iL +∇+−∇= (Eq. 18)

Comparing (Eq. 18) and (Eq. 15), we obtain

( ) ( ) ( )0ZGrZGZG iiL
R
iL ∇⋅+= (Eq. 19)

where ( )0ZGr i∇  is the amount of modification for the
linearized constraint to accommodate design variations.

Sequential Robust Optimization (SROP) combines the
proposed scheme and the SQP to modify the linearized
constraint using (Eq. 19) in each iteration.  The procedure
ensures the searched design will satisfy the (1-α)×100%
confidence of feasibility.  The application of the proposed
algorithm is straightforward, and can be readily integrated with
conventional nonlinear programming methods.
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Figure 5. Modification of linearized constraints using DVHS

5.2. Numerical Example for Robust Feasibility
Consider a simple two-dimensional optimization as

follows:

Minimize y(x1, x2) 212 xx −−=

Subject to 0252
2

2
11 ≤−+= xxg

072
2

2
12 ≤−−= xxg

Assume the variables are normal with the standard
deviations σ1=0.005 and σ2=0.3, and the correlation coefficient
between x1 and x2 is 0.75.  The confidence requirement of the
feasibility is no less than 95%.  Figure 6(a) represents the

nominal optimum Xnopt and the robust optimum Xropt with DVP.
The search of Xropt is more complicate because the shape of
DVP is an oblique ellipse.   Figure 6(b) shows the
optimization problem in the space of standardized variables.
A couple of iterations before convergence are shown in Figure
6(b).   First, the standardized constraints are linearized at
Design Z0.  Because the variation pattern becomes a circle in
the Z space, the modification of the linearized constraints
simply shifts the lines toward the feasible region by the
distance of the Design Variation Radius r.  Design Z1 is found
for the modified constraints and the response contour.  A
similar procedure is applied to Z1 to reach the robust optimum
Zropt.  Table 1 shows the results of the nominal optimization,
Parkinson’s method (statistical variation coefficient k=2), and
the Sequential Robust Optimization.  The probability of
feasibility is estimated using Monte Carlo simulations.

Table 1. The Nominal Optimum and the Robust Feasible
Optimum

Nominal
Optimization

Parkinson’s
Method

Sequential
Robust

Optimization
Variable x1 4.0 3.5084 3.496
Variable x2 3.0 3.0005 2.906

Nominal Objective -11.0 -10.017 -9.898
Probability of
Unfeasibility 0.9524 0.0518 0.0307

Both the results of Parkinson’s method and SROP move
the designs toward the inside of the feasible region to ensure
robustness.  Though the objectives are higher than the
nominal optimum, the probabilities of unfeasibility are greatly
reduced.  The confidence specification of the DVHS is 95%,
which represents that the statistical probability outside the
DVHS is 5%.  However, the DVHS is usually tangent to some
of the constraints, and the actual probability outside the
feasibility will be less than 5%.  We can always trade off
between the objectives and the feasibility by adjusting α of
DVHS.
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Figure 6. The standardization of the variation pattern and the
constraints
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6. Computer Aided Robust Optimization
The window application SROP is presented by

integrating the proposed optimization scheme for
feasibility robustness and the nonlinear programming
software DOT [11].  Figure 7 summarizes the flow chart
of the Sequential Robust Optimization (SROP).  SROP
uses Multimedia Toolbook [12] to compose the interface
(Figure 8) and Borland C for the mathematics
programming.

Call SQP

yes

Is f(ZR) converged?
No

Modify Constraints using Variation Radius

Evaluate Objective f(ZR)

Nominal Optimum Z0
ynopt=F(Z0)

Z0=ZR

Output Result
STOP

( ) ( ) ( ) ( ) ( )0000 ZGZGrZZZGZG ii
T

i
R
iL +∇⋅+−∇=

   Robust Optimum
ZR, f(ZR)

Figure 7. The Sequential Robust Optimization flow chart

Figure 8. Program interface of SROP

7. Design of a Helical Spring
This design example of a helical spring [13] will

illustrate the engineering application of SROP.  The length of
the spring is compressed from hfree to h0 due to a static load F0.
A released compression load Frc is also applied to the spring,
which introduces a reciprocal deformation of δrc.  Given h0 =
58 (mm), δrc = 5 (mm), hfree = 66 (mm), and outside diameter Do

≤ 27 (mm), find the spring design with maximum allowable
static load F0.

The characteristics of the selected material are as
follows:

Modulus of rigidity G = 8.4×103 (MPa)
Allowable stress sw = 84 (MPa)
Fatigue strength se = 42 (MPa)
Safety factor SF = 1.1

����
����

d

hfree

DoDiD

Fs

hs

h0

F0

F0+kδrc

δrc

hfree : Free length of spring
h0 : Spring length with static load
hs : Solid length of spring
D : Nominal diameter of spring
δrc : Deformation due to released

compression load
Fo : Static load
Fs : Force to compress spring to

solid length

Figure 9. Illustration of the helical spring
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The spring example can be formulated as the following
optimization problem.  The first inequality constraint is a
fatigue stress requirement.  sm is the mean stress and sa
is the alternative stress of the spring due to the
fluctuating load.  The second constraint represents the
size limit for the solid length of the spring.  The third
constraint represents the limit for the spring outside
diameter.

Maximize ( )03

4

0 8
hh

nD
GdKF frees −





== δ

Subject to
SFs

s
s

ss
e

a

w

am 1≤





+− 

nd ≤ (h0-δrc)

D+d ≤27

D, d, n > 0

The design variables D, n, and h are subject to
manufacturing errors and fluctuations of operational
temperature.  The uncontrollable parameters G, sw, and se are
subject to uncertainties of material property.  These variations
result in the distribution of design objective.  For the
simplicity of illustration, this paper only considers the variation
of geometrical variables.  The standard deviations of the
dimensional variables are estimated as follows:

σn = 0.015

σd = 0.1 (mm)

σD = 0.25 (mm)

These variations are possibly correlated due to a
manufacturing process [9], such as heat treatment of the coil.
For instance, the coil diameter and the spring diameter are
positively correlated due to temperature effects, while the coil
number might fluctuate in the opposite direction due to stress
relief.  This example assumes the correlation coefficients ρnd

= -0.75, ρnD = -0.75, ρdD = 0.4.

Table 2 shows the results using conventional peak
optimization and the proposed scheme (α =0.75).  The
probability of constraint violation is estimated with
100000 samplings using Monte Carlo simulation to
evaluate the design feasibility.  The expected output
and the standard deviation are calculated using the
probability integration.

The nominal optimum contains a larger expected output.
However, the standard deviation of the nominal optimum is
high, and 80 percent of the design distribution falls in the
unfeasible region.  SROP moves the designs toward the
interior of the feasible region to accommodate the uncertainty
of variables, and reduce the probability of unfeasibility to only
5%.  The standard deviation of robust design is reduced by
13% compared with the nominal optimum.  The cross sections

of the contour plot (Figure 10) show that the change of the
objective is gradual.  When the nonlinearity in the vicinity of
the nominal optimum increases, the improvement using SROP
will be more significant.

Table 2. Design comparison of helical springs

Nominal
Optimum SROP

Number of coil n 9.466 9.654
Coil diameter d (mm) 5.599 5.30

Nominal spring diameter D (mm) 21.401 21.084
Nominal output (N) 88.985 73.229

Expected response (N) 89.114 73.353
Standard deviation of response (N) 5.911 5.121
Unfeasibility probability (%) 80.2 5.4

8. CONCLUSION
This paper addresses the influence of design variations on

feasibility uncertainty in design optimization.  We propose a
robust optimization scheme, SROP, which adopts the concept
of Design Variation Pattern (DVP) in the modification of
design constraints.  The concept of DVP is transformed to the
Design Variation Hyper-Sphere that is introduced to the
nonlinear programming algorithm SQP.  SROP provides an
optimal design with satisfactory feasibility despite possible
correlation among variations.  The SROP program is
presented to facilitate the application of robust optimization.
The spring design example demonstrates the effectiveness of
the proposed scheme.  The robust design of a helical spring
improves the output deviation and the design feasibility at the
minimum expense of mean output.

ACKNOWLEDGEMENT
This research is funded by the National Science Council

of the Republic of China under grant NSC 86-2212-E-011-
011.



Copyright © 2000 by ASME8

9 9.2 9.4 9.6 9.8 10 10.2 10.4

5.2

5.4

5.6

5.8

6

(D=21.084 mm)

90

86

94

96
104108

84

80

76

72

68

64

w
ire

 d
ia

m
et

er
 d

 (m
m

)

Number of turns   n  

RO with DVP

 

18 20 22 24

6

5.8

5.6

5.4

5.2

5

(n=9.654)

90 80
70

60

100120140 110

Spring diameter D (mm)

RO with DVP

w
ire

 d
ia

m
et

er
 d

 (m
m

)

18 20 22 24 26
9

9.2

9.4

9.6

9.8

10

10.2

10.4

(d=5.3 mm)

90 80100 70 60 50

Spring Diameter D (mm)

N
um

be
r o

f t
ur

ns
 n

RO with DVP

40

Figure 10. Cross-section contour plots and constraints
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