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Abstract 

This work proposes a sequential optimization algorithm, EORKS, combining a 

Kriging surrogate from an adaptive sampling and an iterative constrained search in 

the dynamic reliable regions to reduce the sampling size in expensive optimization. A 

surrogate established from small samples is liable to limited generality, which leads 

to a false prediction of optimum. EORKS applies the Kriging variance to establish 

the reliable region neighbouring the learning samples to constrain the evolutionary 

searches of the surrogate. The verified quasi-optimum is used as an additional sample 

to dynamically update the regional model according to the prediction accuracy. A 

hybrid infilling strategy switches between the iterative quasi-optimums and the 

maximum expected improvement from Kriging to prevent early convergence of local 

optimum. EORKS provides superior optimums in several benchmark functions and 

an engineering design problem using a much smaller samples compared with the 

literature results, which demonstrates the sampling efficiency and searching 

robustness. 

Keywords: Expensive optimization; Surrogate-based optimization; Sequential 

approximate optimization; Kriging; Evolutionary algorithms 

1. Introduction 

Current advances in evolutionary optimization such as genetic algorithm (GA) (Holland 

1973) and particle swarm optimization (PSO) (Eberhart and Kennedy 1995) are effective to 

solve for the global optimum of highly nonlinear problems (Zang, Zhang, and Hapeshi 

2010). Success applications of evolutionary algorithm in engineering optimization have 

been well reported in literature. However, cost constraints of expensive optimization often 

impose a limit on the number of samples if time consuming simulations and physical 

experiments are involved. Direct applications of population-based algorithms to expensive 

optimization are often impractical because a lot of fitness evaluation are required in the 

evolution process. Surrogate assisted evolutionary optimizations replace the engineering 

system with an approximate surrogate trained from finite learning samples. Instead of direct 

interaction with actual engineering systems, evolutionary optimizers search in the surrogate 

for an estimate of optimum to reduce the sampling cost (Tenne 2012). 
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Typical surrogate modelling includes polynomial response surface method (RSM), 

Kriging model, radial basis function (RBF), artificial neural network (ANN), moving least-

squares (MLS), and support vector regression (SVR) (Forrester and Keane 2009). The 

choice of modelling scheme will affect prediction accuracy and sampling strategies. Le et 

al. introduced an adaptive surrogate that selects multiple diverse approximation methods 

according to the evolvability metric in the optimum search (Le et al. 2013). The 

evolvability learning of surrogates is constructed for use within a trust-region enabled local 

search to increase the searching efficiency. Kriging and radial basis function are preferred 

to conventional quadratic models for robust design optimization because of a superior 

ability to simulate non-linear responses (Elsayed and Lacor 2014). Kriging is known as 

Gaussian process modelling consisting of a regression model and a stochastic process 

(Sacks et al. 1989). Regression models can be zeroth, first, or second order polynomials 

which globally approximates design space, while stochastic processes compose local 

deviations. Kriging model provides a measure for the predictor error (Kriging variance) to 

establish a confidence interval as shown in Figure 1. Some  (Liu and Maghsoodloo 2011) 

adopted Taylor expansion as the base functions to enhance the regression approximation of 

Kriging. Xia et al. developed Adaptive Dynamic Taylor Kriging (ADTK) to assist Monte 

Carlo simulation for reliability evaluation (Xia, Ren, and Koh 2017). The Taylor Kriging 

model is iteratively updated by additional sampling points selected adaptively from the test 

points until the fitting error of the surrogate is acceptable.  

 

Figure 1 Example of one-dimensional data interpolation by Kriging with confidence 

intervals. 

 

The generality of surrogate is directly related to the density of training samples. The 

efficiency of sample deployment becomes a major concern in expensive optimization. 

Unlike conventional surrogate-based approaches which prefer well established samples to 

construct a surrogate with global accuracy, the iterative search known as sequential 

approximate optimization (SAO) uses adaptive sampling to iteratively search and update 

the surrogate model (Kitayama, Arakawa, and Yamazaki 2011). The efficient global 
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optimization (EGO) used Kriging surrogate and the maximum expected improvement 

criteria as the sequential sampling strategy (Jones, Schonlau, and Welch 1998). Eason and 

Cremaschi introduced pure and mixed adaptive sampling algorithms to iteratively update a 

neural network model (Eason and Cremaschi 2014). Yu and Juang applied the quasi-

optimum obtained from a constrained population search in the reliable region as the 

sequential sampling to refine an iterative network model (Yu and Juang 2010). 

Kanakasabai and Dhingra applied a progressive Kriging surrogate for reliability-based 

design optimization, and proposed the Halton sequence as adaptive sampling strategy 

(Kanakasabai and Dhingra 2014). 

Typical training samples of surrogate are from existed field data and design of 

experiments (DOE). Most studies prefer DOE since uncontrolled field data might be poorly 

distributed which will decrease the prediction accuracy of trained models. There are two 

sampling strategies in surrogate-based optimization approach: space filling sampling (SFS) 

and sequential infilling sampling (SIS) methods. SFS distributes an initial samples into the 

design space to gain an overview of the response, while SIS places additional samples at 

specific locations based on the information derived from the current data. Latin hypercube 

sampling (LHS) is attractive among SFS strategies for expensive optimization because of 

an uniform distribution of the projection of samples onto each dimension without repetition 

(Giunta, Wojtkiewicz, and Eldred 2003). Many literatures (Jones, Schonlau, and Welch 

1998, Shao and Krishnamurty 2008, Bhattacharya 2010) suggested 10 times of the number 

of variables as initial samples. However, the initial samples may not be sufficient and well 

distributed in expensive optimization, which results in a surrogate model with insufficient 

generality. Similar constraints appear if ill distributed field data has to be used as initial 

learning samples to save cost. How to utilize the inadequate surrogate to predict a reliable 

quasi-optimum and the strategy of additional samples to efficiently refine the model 

become important issues. 

Sequential infilling sampling also called adaptive sampling strategy addresses how to 

distribute new samples to improve the regional accuracy of iterative surrogate model (Hu et 

al. 2017, Eason and Cremaschi 2014). Sequential sampling methods can be categorized as 

exploitation, exploration, or balanced exploitation/exploration approach (Forrester and 

Keane 2009). Sequential maximin Latin hypercube sampling method (Long et al. 2016) 

distributed additional samples to the less populated regions by maximizing the minimum 

distance between the new sample and existing ones to evenly explore the design space and 

improve the overall prediction generality. The sequential sampling strategies using 

maximizing expected improvement (EI) (Jones 2001, Parr et al. 2012) balancing 

exploitation and exploration, which has been proven to be an efficient infilling criterion.  

However, the sampling strategy tends to distribute additional samples in the area with lower 

sampling density, and the model optimum is not searched and verified during the iteration 

until the convergence of sampling. If the search has to be terminated prematurely, the initial 

improvement of optimum is not secured. 

Prediction reliability is as important as optimality in expensive optimization. A 

surrogate from a small number of training samples might result in an inadequate model 

with lower generality, which leads to a false prediction of optimum or a trap to local 

optimum. The space surrounding learning samples of an approximate model often provides 

better prediction accuracy. Therefore, instead of searching the regions far away from 

sample sites which are liable to larger errors, it is more reliable to constrain the search in 
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the regions surrounding the training samples. A trust region is defined by a trust radius 

surrounding the updated optimum, which is initialized at a user defined value from an 

arbitrary point and iteratively updated to shrink or to expand the region depending on the 

prediction accuracy (Alexandrov et al. 1998). The trust region approach shows excellent 

convergence to a local optimum (Forrester and Keane 2009, Abdel-Malek, Ebid, and 

Mohamed 2017).  

Younis and Dong proposed the space exploration and unimodal region elimination 

algorithm that divides the design space into key unimodal regions from the initial 

experimental data to identify the promising regions (Younis and Dong 2010). Additional 

samples using LHS are introduced to each of the unimodal regions to establish regional 

Kriging models to predict the local optima which are compared to determine the global 

optimum. However, the quality of the initial samples will be important to identify the 

promising regions, and the total number of samples increases significantly with the number 

of regions due to additional LHS samples. 

Yu et al. adapted the trust region concept to population-based optimization and 

proposed the reliable regions of an artificial neural network model to be the union of hyper-

spheres surrounding training samples (Yu, Liang, and Hung 2014). The searched quasi-

optima serve as additional samples to refine the network model, and the prediction accuracy 

of the quasi-optimum will be applied to adjust the reliable radii of the regional neural 

network using a fuzzy inference. The searching and retraining processes iterate until the 

convergence of optimum. The definition of the reliable regions using hyper-spheres 

surrounding training samples is simple but lack of the consideration of the correlation 

among samples. The estimation error of the prediction provided by Kriging modelling will 

provide a more realistic reference to define the reliable region (Suprayitno 2016). Also, the 

vicinity search surrounding the samples won’t guarantee a global optimum if no initial 

sample is in the global basin of attraction. To locate the true global optimum, exploration 

samples are essential in infilling sampling for sequential approximate optimization. 

This work presents a novel evolutionary framework with an adaptive sampling 

strategy for expensive optimization. The sequential surrogates for engineering applications 

are liable to low generality sequential approximate optimization due to constraint of sample 

size and system nonlinearity.  The estimation error provided by Kriging will be applied to 

define the reliable region of surrogate that is dynamically updated according to the 

prediction accuracy. Evolutionary optimizer is introduced to search for the quasi-optimum 

in the reliable region to improve the search efficiency. A hybrid infilling strategy is also 

introduced to deploy additional samples to ensure sampling efficiency and global 

optimality during the evolution of surrogate model.  

2. Evolutionary Optimization Using Reliable Regional Kriging Surrogate. 

This study presents a novel evolutionary algorithm based on the iterative constrained search 

in the progressive regional surrogate defined by Kriging model and prediction error. Figure 

2 shows the flowchart of the proposed scheme, the evolutionary optimization using reliable 

regional Kriging surrogate (EORKS). A Kriging based surrogate model is first established 

from small initial samples using DOE. To improve the search reliability the Kriging 

standard error is applied to define the reliable region to constrain an evolutional optimizer 
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for a quasi-optimum. The quasi-optimum will become the additional infilling sample unless 

the updated quasi-optimum converges to the current designs, and the infilling strategy will 

relocate an alternative sample with the maximum expected improvement (EI). The 

additional sample will be augmented to the learning samples to refine the surrogate. The 

prediction accuracy of the surrogate for the sequential sample will also be applied to 

intelligently evolve the regional model using a fuzzy inference. The process iterates until 

the convergence to the global optimum. The detailed process of EORKS will be illustrated 

as follows. 

Learning samples

Kriging modeling

Update reliable region

Convergence of 

Quasi-optimum?

Relative max(EI) ≤ 1%

Additional sample

Fuzzy Inference of 

Model Generality

Global Optimal design

No

Yes

No

Yes

Constrained optimization to 

find Quasi-optimum 

Find alternative sample

with max(EI)

Initial samples

Evaluate the 

additional sample

 

Figure 2 Schematic flow chart of proposed optimization algorithm EORKS. 

2.1. Reliable region of an inadequate Kriging surrogate 

The number of samples is often limited for expensive optimization. LHS strategy is 

suggested if DOE is available since LHS provides a small and symmetric distribution of 

samples. The number of LHS initial samples is assumed two times of the design variables 

in this work. However, how to address the low generality of an inadequate surrogate due to 

a small set of learning samples is a practical issue, especially if a reliable quasi-optimum is 
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expected form the inadequate surrogate in a finite iterations. Similar challenges occur and 

become more critical if the use of unplanned field data is applied as training samples; even 

the field data might be sparse and ill distributed. 

Kriging, known as Gaussian process modelling, assumes a response function 

composed of a regression model and a stochastic process, as in (1).  

Y(x) = f(x)Tβ + Z(x) (1) 

where f(x) = [f1(x), f2(x), . . . , fp(x)]T is a vector of regression functions; β = [β1, β2, . . . βp]
T 

is a vector of unknown coefficients, and Z(x) is a stochastic process with zero mean and 

nonzero covariance σ2R(x, x').  The regression model f(x) often adopts a constant or low-

order polynomials. From a preliminary study, first order polynomial is sufficient for most 

numerical benchmark test functions. 

 

 
(a) 

 
(b) 

 
 (c) 

 
(d) 

 

Figure 3 Illustration of the prediction error using Kriging model (a) True response surface 

of peaks function, (b) Prediction response surface from Kriging model using 10 LHS 

learning samples, (c) True error contour plot of Kriging model with an overlaid exemplar 
reliable region, and (d) Kriging standard error map. 
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For the example of a two dimensional Peaks function as in (2), the theoretical contour 

plot is highly non-linear which includes 3 peaks and 2 valleys and flattens out gradually as 

shown in Figure 3(a). Figure 3(b) is the response surface of a Kriging surrogate 

established from 10 LHS samples. First order polynomial is selected as the basic functions. 

The surrogate model simulates a rough profile of the true function, but significant errors 

present especially for the prediction farther away from the samples. Increasing the number 

of samples seems a simple solution, but will raise a cost concern. How could we make the 

most out of this inadequate surrogate and infer a quasi-optimum from the current model are 

important in applications. 

𝑧 = 3(1 − 𝑥)2𝑒−𝑥2−(𝑦+1)2 − 10(
𝑥

5
− 𝑥3 − 𝑦5) 𝑒−𝑥2−𝑦2

−
1

3
𝑒−(𝑥+1)2−𝑦2

 . (2) 

 

The unique feature of Kriging modelling is the provision of measuring possible error 

of the prediction. The Kriging error variance of the predictor (Jones 2001) is shown as in 

(3), 

𝑠2(𝒙) =  �̂�2 [1.0 − 𝒓𝑇𝑹−1𝒓 +
(1.0−𝟏𝑇𝑹−1𝒓)

2

𝟏𝑻𝑹−1𝟏
] . (3) 

where 1 is a vector filled with ones. R and r are the correlation matrix and the correlation 

vector, respectively. Gaussian correlation function is widely used with the form as in (4), 

𝑅(𝒙, 𝒙′)  = 𝑒−∑ 𝜃𝑘|𝑥𝑘−𝑥′𝑘|2𝑛
𝑘=1  . (4) 

where k are the correlation parameters from the maximum likelihood estimation , n is the 

number of design variables, and   |𝑥𝑘 − 𝑥′𝑘| is the Euclidean distance between any two sites 

x and x’. Kriging error variance goes to zero at the sampled points, and becomes larger as 

the location is farther away from the sampled points. 

Figure 3(c) shows the true error between the Peaks function in Figure 3(a) and the 

Kriging approximation in Figure 3(b). Searching the entire space of an inadequate 

surrogate might lead to a false optimum due to limited generality. Despite insufficient 

global generality, the standard error provided by the Kriging estimation as in Figure 3(d) 

shows a similar tendency to the true error in Figure 3(c) in the proximity of learning 

samples. An exemplar reliable region based on the predicted standard error of 2.37 is 

overlaid on the true error contour plot as shown in Figure 3(c). A constrained search in the 

neighbouring regions surrounding the samples will provide a more reliable quasi-optimum 

than a global search. 

This study proposes the reliable regions of a Kriging surrogate as the space with a 

Kriging standard error smaller than a weighted function of the maximum Kriging standard 

error predicted as shown in (5).  

𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 (𝑅𝐾𝑆) = 

{𝒙 | 𝐾𝑟𝑖𝑔𝑖𝑚𝑔 𝑠𝑡𝑑𝑒𝑣. (𝒙) ≤ [𝐶 × 𝑚𝑎𝑥(𝐾𝑟𝑖𝑔𝑖𝑛𝑔 𝑠𝑡𝑑𝑒𝑣. )]} 
(5) 
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The coverage coefficient C varies from 0 to 1. The maximum Kriging standard error can be 

obtained from the search of (3) in the design space. A small C will lead to a conservative 

search surrounding the samples, while a large C will explores a larger portion of the 

surrogate but might lead to an erroneous prediction if the surrogate is inadequate. The 

selection of the coverage coefficient C depends on the system complexity and model 

accuracy. A fuzzy inference system for the evolution of C will be introduced based on the 

prediction accuracy of the additional sample. 

2.2. Quasi-optimum search using evolutionary optimizer 

Evolutionary optimisers, such as GA and PSO, can be applied to capture the optimum of 

the Kriging surrogate. The searched optimum is called a quasi-optimum since the search is 

confined to the reliable regions. As a population-based algorithm, a diverse solution is 

essential in GA to avoid premature convergence and slow convergence (Gupta and Ghafir 

2012). The Kriging standard errors of the offspring are calculated using (3) and compared 

with (5) to make sure a constrained evolutionary search in the reliable region. The verified 

result of the searched optimum is added to the learning samples to refine the surrogate in an 

iterative fashion until convergence. The comparison of the surrogate-based optimization 

using the constrained GA search in the reliable regions and the conventional search in the 

complete surrogate illustrates the influence of inadequate surrogate on the optimum search. 

The initial samples are denoted as hollow dots in Figure 4(a). The iterative optima 

provided from the conventional approach scattered to unlikely regions such as iterations 1, 

2, and 11 due to limited generality of the surrogate. On the other hand, the distribution of 

optima using the reliable regions inclined toward trustworthy and promising area which 

leads to a faster convergence as shown in Figure 4(b).  

 

 

 
(a) 

 
(b) 

Figure 4 Distributions of iterative predicted optima over the true contour plot of Peaks 

function using surrogate-based GA search (a) in the whole regions and (b) in the updated 

reliable regions. 
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A similar process can be applied to search for the quasi-optimum of the reliable 

regional Kriging surrogate using any preferred evolutionary optimizers. PSO is inspired by 

social interaction in human beings and animals such as the behaviour of bird flocking and 

fish schooling to guide the particles to search for the global optimum. The particles fly over 

the searching space with dynamic velocities typically composed of three components: 

inertia velocity, memory, and social knowledge (Rezaee Jordehi and Jasni 2013). The 

position of particles are updated with the weighted sum of the three components using the 

coefficients w, c1, and c2 respectively. 

To demonstrate that the proposed evolutionary reliable regional Kriging surrogate can 

be readily adapted to the selected optimizers, the comparison of the optimization of 2-D 

sphere function and Branin function using GA and PSO are presented in Table 1.  The 

corresponding parameters for both optimizers are listed in Table 2.  The contour surface of 

the 2-D sphere function is very smooth with a single optimum, while the Branin function is 

multi-modal. The optimization results of 10 runs show that the applications of EORKS with 

PSO and GA have comparable performance in both the best solution and total number of 

required samples. Since the optimizer is applied to search the regional surrogate, the 

computational cost is small compared with the actual samples required to establish the 

surrogate which often involve expensive experiments and simulations. In general, PSO is 

more efficient to locate the quasi-optimum of the regional surrogate compared with GA but 

liable to trap to local optimum if the initial selection of particles is ill distributed. Therefore, 

GA is adopted as the optimizer in the following study. 

Table 1 Comparison of the applications of EORKS using GA and PSO as the optimizer for 

2-D sphere function and Branin function  
 EORKS - PSO EORKS - GA 

 Optimum Total no. of samples Optimum Total no. of samples 

2-D sphere function   

Averagea 2.54E-07 15.90 1.29E-06 15.80 

Standard Deviationa 2.06E-07 0.74 1.65E-06 0.63 

Branin function  

Averagea 0.3979 26.60 0.3979 25.40 

Standard Deviationa 0.0000 3.86 0.0000 2.76 
a Optimization results in 10 runs 

 

Table 2 Parameters setting for GA and PSO optimizers 
Real number GA Adaptive PSO * 

Initialization:  

Number  of population: 10 × number of problem 

variables 
Number of new offspring: 0.8 × number of population  

Maximum generation: 1000 

Parents selection method: roulette wheel selection 

Crossover: single point crossover 
Mutation: one point mutation with 0.3 mutation rate 

New generation: Elitism method – preserve the best two 

instances from the parent population 

Swarm size: 10 × number of problem variables 

Maximum iteration: 1000 

Initial inertia weight: w = 0.9 
Initial acceleration: c1=c2=2.0 

 

 * Adaptive strategy from (Zhan et al. 2009) 
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2.3. Evolution of reliable region 

The coverage coefficient C will determine the reliable region and the searching space of 

surrogate for optimizer, which depends on the system complexity and surrogate accuracy. 

This study presents an automated update mechanism starting from an arbitrary initial 

selection. The searched quasi-optimum will serve as a test sample, and the prediction error 

of the test sample will become a feedback mechanism to adjust the coverage coefficient C. 

The model reliability is measured by the relative prediction error of the test sample as in 

(6).   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠 (
𝑦𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑− 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑦𝑣𝑒𝑟𝑖𝑓𝑖𝑒𝑑
) . (6) 

If the relative prediction error is small, the generality of the model is good and the 

reliable region will be expanded to explore a larger space, otherwise the reliable region 

should be reduced for a conservative search of the quasi-optimum in the next iteration. A 

heuristics based fuzzy inference scheme is proposed as follows to dynamically update the 

reliable region based on the model reliability.  

1. If the relative error of prediction is Small then Increase the coverage 

coefficient. 

2. If the relative error of prediction is Moderate then Maintain the coverage 

coefficient. 

3. If the relative error of prediction is Large then Decrease the coverage 

coefficient. 

Standard membership functions are used as illustrated in Figure 5 for the three 

condition levels of relative prediction error: Small, Moderate, and Large, and for the three 

assessment levels of adjustment: Increase, Maintain, and Decrease. A simple centre average 

defuzzifier is applied to derive the adjusting factor (AF) for the coverage coefficient C as in 

(7). The adjustment factor will be between 0.8 and 1.2 depending on the prediction 

accuracy. 

𝐶𝑖+1  =  𝐴𝐹𝑖  × 𝐶𝑖 . (7) 

 

 
 (a)  (b) 

Figure 5 Membership functions for the fuzzy inference of reliable region (a) prediction 

error (b) adjusting factor 

 

 

0.25 0.50 0.75 

Small Moderate Large 

Relative Prediction Error 

 Decrease Maintain Increase 

0.6 0.8 1.0 1.2 1.4 

Adjusting factor 
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(a) 1st iteration 

   
(b) 3rd iteration 

   
(c) 7th iteration 

   
(d) 13th iteration 

Figure 6 Sequential surrogate models and the corresponding evolution of reliable regions 

for Peaks function 

 

The self-learning mechanism of the reliable region using the fuzzy inference will 

automatically adjust the size of reliable regions and guide the searching range of optimizer 

according to the surrogate generality, and reduces the sensitivity of the initial selection of 

C. The initial selection of the coverage coefficient arbitrarily assumes 0.2 in this study. The 

response surfaces in Figure 6 show how the proposed scheme progressively refined the 
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Kriging surrogate by introducing additional learning sample, and the contour plots in 

Figure 6 show how the fuzzy inference dynamically updated the reliable regions. 

2.4. Hybrid infilling sampling strategy 

Global generality of prediction accuracy is not necessary for surrogate based optimization. 

Since sampling efficiency is crucial to expensive optimization, additional samples are 

preferred in the promising areas of optimum. This study suggests a smaller set of initial 

training samples and distributes additional samples identified during the iteration of 

optimization to progressively and selectively refine the surrogate. The proposed 

optimization scheme, EORKS constrains the optimizer search in the reliable regions to 

improve the prediction accuracy of the quasi-optimum from the possibly inadequate 

surrogate. Additional training samples from the true function calls or experiments of the 

derived quasi optimums are commonly used to exploit promising regions. However, if the 

additional samples adopt only the quasi-optimums which are constrained to the vicinity of 

training samples, the search is liable to be trapped to a local optimum. On the other hand, 

using an exploration approach only might lead to incorrect convergence due to smooth out 

the best problem. A hybrid infilling sampling strategy considering both exploitation and 

exploration is introduced in this study. The exploitation approach using verified quasi-

optimum is combined with exploration approach using maximum expected improvement 

criteria. 

From the evolutionary search of the reliable region, calls to the true function for the 

quasi-optimum is added to the training samples to refine the surrogate. If the predicted 

quasi-optimum is converged to current samples, an alternative sample site with the 

maximum expected improvement of the current surrogate will replace the quasi-optimum in 

the next verification and retraining process. Kriging model assumes the prediction y(x) is a 

stochastic distribution centred on ŷ(x) with a variance of s2(x). The definition of expected 

improvement for a search of minimum is illustrated in Figure 7. If the best observed 

objective of the current samples is ymin, considering the Kriging prediction is normally 

distributed, the probability of improvement I(x) = ymin – y(x) is the area enclosed by the 

Gaussian distribution below ymin as in Figure 7. The expected improvement, E[I(x)], can be 

estimated as follows. 

𝐸[𝐼(𝒙)] =

[
 
 
 
 

1

𝑠√2𝜋
∫ [𝑦𝑚𝑖𝑛 − 𝑦(𝑥)] × 𝑒

−[𝑦(𝒙)−�̂�(𝒙)]2

2𝑠2

𝑦𝑚𝑖𝑛

−∞

𝑑𝑦 𝑖𝑓 𝑠 > 0

0 𝑖𝑓 𝑠 = 0]
 
 
 
 (8) 

E[I(x)] will be zero at all sample sites due to the nature of Kriging standard error. In case 

the maximum expected improvement criterion is activated, the coverage coefficient will 

maintain the value in the last iteration. 
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Figure 7 Probability of improvement for Kriging prediction  

 

2.5. Iteration for optimum  

To cope with sparse and ill distribution of learning samples in expensive optimization, the 

proposed scheme establishes a reliable regional Kriging surrogate based on the prediction 

error of Kriging modelling. The quasi-optimum searched in the reliable regions will 

provide a more reliable improvement from the inadequate surrogate. To reduce the cost of 

additional training samples, only one additional sample from the hybrid infilling sampling 

strategy is introduced to the learning samples in each iteration. The augmented learning 

samples progressively evolve the reliable regional Kriging surrogate based on the fuzzy 

inference of the prediction generality. The accuracy of the surrogate model will then 

improve in the promising area of optimum, which ensures the sample efficiency and the 

robustness of searched optimum. The stopping criteria include the convergence of the 

quasi-optimum for three consecutive times and the maximum expected improvement less 

than 1% of the current optimum. Sometimes, premature stop is possible in engineering 

applications due to cost constraint and insignificant increment of improvement within 

tolerance.  

3. Benchmark Test Functions  

Six benchmark functions are applied to compare the sampling efficiency and the searched 

results using the proposed optimization algorithm, EORKS, with those using the surrogate 

assisted evolutionary algorithms in literature  (Jones, Schonlau, and Welch 1998). Branin 

and Goldstein-Price functions are two-dimensional. Hartman 3-D and Hartman 6-D are 3-

dimensional and 6-dimensional functions respectively. For the numerical problems in 

higher dimensions, the optimization of two extreme benchmark test functions, the Sphere 

function and the Ackley function in 20-dimension, are applied to compare with the 

literature results. The Sphere function, as shown in Figure 8 (a) of a two-dimensional 
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example, is a simple and smooth contour, which has only one single global optimum and no 

local optimum. On the other hand, the Ackley function is a ‘noisy’ function, as shown in 

Figure 8 (b) of a two-dimensional example, which has multiple steep valleys of one global 

optimum and numerous local optimums. Though these response surfaces are unlikely to 

happen in real world optimization problems, these two extreme examples are used to test 

the robustness of the proposed methods. 

The optimization of Branin, Goldstein-Price, Hartman 3-D, and Hartman 6-D 

functions comparison are compared with the results using EGO (Jones, Schonlau, and 

Welch 1998). For Goldstein-Price and Hartman 6-D functions, the log-transformed forms 

are used as suggested in the reference. EGO is a surrogate-based optimization approach 

using Kriging model and the maximum expected improvement as the sequential sampling 

strategy. The initial size of samples used in EGO adopts 10 time of the dimension of the 

problem, while EORKS started from a smaller initial sample of 2 times of the dimension of 

the problem. The comparison in Table 3 shows that EORKS required much smaller sets of 

samples than EGO did to reach the optimum with less than 1% error for all the four 

benchmark test functions. In average, EORKS reduces the number of samples by 39% in 

comparison with EGO. 

 

 

 
(a) 

 
(b) 

Figure 8 Benchmark test functions (a) 2-D Sphere function (b) 2-D Ackley function. 

 

 

Table 3 Comparison of the sampling efficiency for EGO and EORKS algorithms 

Test function Method No. of Initial samples 
No. of sequential samples 

required to derive the 

optimum with <1% error 

Total no. of samples 

Branin 
EGO* 21 28 49 

EORKS 4 36 40 

Goldstein-Price 
EGO* 21 32 53 

EORKS 4 26 30 

Hartmann 3-D 
EGO* 33 35 68 

EORKS 6 37 43 

Hartmann 6-D 
EGO* 65 121 186 

EORKS 12 68 80 
* Optimization results in (Jones, Schonlau, and Welch 1998) 
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Figure 9 Iteration results of the 20-D Sphere function 

 

 

Figure 10 Iteration results of the 20-D Ackley function 

 

Figure 9 and Figure 10 show the iteration results of the Sphere function and Ackley 

function of 20-dimension using EORKS. The initial surrogates are established from -LHS 

with the number two times of design variables which are 40 samples in these examples. 

Continuous solid line represents the iteration result of predicted quasi-optima, while the 

hollow dots are the verified responses of the quasi-optima. The quasi-optima have larger 

prediction errors in the early iterations due to lack of generality of the initial surrogate 

model. However, the discrepancy stabilized due to the use of reliable regions. The quasi-

optimum converges smoothly to the global optimum. The iteration curve of the Ackley 
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function is more severe than the Sphere function as expected, and requires more samples to 

converge because the response surface of Ackley function contains many sharp local 

optima around the global optimum.  

The Sphere function is very smooth, and has a global optimum at the origin with the 

response of zero. Bhattacharya (Bhattacharya 2010) used support vector machine to build 

the surrogate model for the 20-dimensional (20-D) Sphere function, and applied the 

preference learning technique with genetic algorithm for the sequential training and search. 

The results shown in Table 4 are the average performance and the average number of 

function calls of three optimization runs. EORKS provides a superior optimum using 57% 

less number of the true function calls in average compared with the literature result. 

Similar advantages can be observed for the optimization of the 20-D Ackley function 

in comparison with the result in the reference (Jin, Olhofer, and Sendhoff 2002) that 

adopted artificial neural network surrogate with weighted online learning using the 

covariance matrix in combination with an adaptive genetic algorithm search. Table 4 

compares the performance and the required function calls of ten runs using EORKS with 

the results in the cited reference. The average best fitness is 0.81 and the average number of 

function calls is 1483 in the reference. On the other hand, the optimal fitness provide by 

EORKS is 0.331 that outperforms the literature result using only 44% of the function calls. 

Table 4 Comparison of the optimization results for 20-dimensional Sphere function and 

Ackley function 

Test Function Optimization Method 

Best Fitness Function calls 

Average Standard 
Deviation 

Average Standard 
Deviation 

Spherical 20-D* Literature Results 1.013E-07 n/a 2750 n/a 

EORKS 9.820E-10 4.211E-10 1172 39 

Ackley 20-D** Literature Results 0.81 0.32 1483 77.8 

EORKS 0.33 0.37 654 10.1 

* Optimization result based on 3 runs and compare with in (Bhattacharya 2010) 
** Optimization result based on 10 runs in (Jin, Olhofer, and Sendhoff 2002) 

4. Truss optimization 

The optimization of a truss structure (Shao and Krishnamurty 2008) is used to illustrate the 

engineering application. Figure 11 shows the schematic sketch of the initial design of the 

truss structure. The truss is 12 meter long with a maximum height of 3 meter, and is 

constructed of 21 straight and uniform steel bars pinned together. The circular cross 

sectional area of all truss members is 25 cm2. The design objective is to maximize the truss 

efficiency, which is defined as the ratio of the maximum load (Fmax) that the truss can bear 

to the self-weight of the truss (W). The load F reaches the maximum value when any one of 

the 21 bars reach the following constraints: 

(1) The induced maximum tensile stress t > 200 MPa,  

(2) The induced maximum compression stress c > 200 MPa, and, 

(3) The stability ratio RBK of the maximum compression stress (c,i) to the 

associated critical buckling stress (Scr,i) of bar i is greater than  1. 
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Here, Scr,i = 2E/(Le-i/)2, whereas E is Young’s modulus of the truss material,  is the 

radius of gyration of the truss bar, and Le-i are the equivalent length of i-th truss member, i 

=1, 2, ..., 21, which is equal to the length of the corresponding pinned truss member 

(Juvinall and Marshek 2006, 228).  The truss is fixed at its left end support and simply 

supported at its right end. Since the truss is symmetric, the seven locations of its joints are 

considered as design variables including the horizontal positions of joints 1 (x1) and 2 (x2), 

the vertical and horizontal positions of joints 3 (x3, y3) and 4 (x4, y4), and the vertical 

position of joint 6 (y6). The optimization problem can be formulated as follows; 

Maximize  Fmax/W = f(x1, x2, x3, y3, x4, y4, y6) 

Subject to {t, c}  a (= 200 MPa) 

 
𝜎𝑐,𝑖

𝑆𝑐𝑟,𝑖 
  1  

 0.8   {x1, x3, y3, y4, y6}  3.0 m 

 3.3   {x2, x4}  5.5 m 

There is no analytical solution for the truss efficiency, and the maximum load has to 

be obtained using finite element analysis (ANSYS) which is a computationally expensive 

problem. Shao and Krishnamurty proposed a clustering-based multilocation search (CMLS) 

to solve the problem using 70 initial sampling points and add 25 extra samples after five 

iterations to converge to an optimum. The proposed method starts from a rough Kriging 

model with 14 initial samples distributed using LHS method as shown in Table 5. EORKS 

converged in 73 iterations. The maximum load of optimum design is 231.74 kN while its 

weight is 9022.4 N. Maximum tensile stress and maximum compressive stress are 83.47 

MPa and -107.49 MPa respectively. The largest stability ratio, RBK, due to critical buckling 

stress is 0.99 which also satisfies the design constraint. The optimization results for truss 

efficiency and cost of computation are compared with the best design of initial samples and 

the result in the literature as listed in Table 6 and illustrated in Figure 12. The truss 

efficiency increases by 8.4% and reduces the number of samples by 12.6% using EORKS 

compared with the result in the literature. 

 

Table 5 LHS Initial Samples for the Truss Optimization 

Sample 
Design variables 

Fmax/W 
x1 x2 x3 y3 x4 y4 y6 

1 0.879 5.421 1.821 1.350 3.379 2.607 2.450 4.511 

2 1.821 4.321 2.607 1.193 4.793 1.821 1.664 8.615 

3 1.350 4.636 1.507 1.979 5.421 2.921 0.879 4.705 
4 2.921 4.007 2.921 1.664 3.850 2.293 1.193 4.962 

5 2.293 3.693 1.193 2.293 3.536 2.764 2.293 11.224 

6 1.193 3.379 2.293 1.036 5.107 1.979 2.607 2.975 

7 2.136 3.850 0.879 1.507 4.479 1.507 2.136 7.148 
8 2.607 4.950 1.979 2.136 4.321 1.036 2.921 17.035 

9 2.764 4.479 2.136 1.821 5.264 2.136 2.764 12.059 

10 1.979 5.264 2.450 2.921 4.636 2.450 1.821 7.288 

11 1.036 4.164 2.764 2.450 4.007 0.879 1.507 5.939 
12 1.664 3.536 1.664 2.607 3.693 1.664 1.350 9.053 

13 2.450 5.107 1.350 0.879 4.164 1.350 1.036 9.550 

14 1.507 4.793 1.036 2.764 4.950 1.193 1.979 6.330 
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Table 6 Optimal designs of the truss example 

Result 
Design Variables 

Fmax/W 
No. of 

Sample x1 x2 x3 y3 x4 y4 y6 

Initial 2.607 4.950 1.979 2.136 4.321 1.036 2.921 17.04 14 

CMLS 2.370 4.174 1.877 1.721 4.024 1.438 2.186 22.79 95 

EORKS 3.000 4.209 1.902 2.285 4.222 1.709 2.644 25.66 87 

 

 

Figure 11 Initial design of the truss optimization problem 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 12 Truss optimization results (a) The best design from initial samples, (b) Optimum 

design from CMLS method, (c) Optimum design from EORKS method 
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5. Conclusions 

The proposed optimization algorithm, EORKS, starts from a Kriging based surrogate model 

using a small number of samples, and constraints the optimizer search within the evolving 

reliable region defined by a dynamic allowable prediction error. The constrained search 

provides a reliable quasi-optimum even the surrogate model is inadequate in global 

generality due to sparse samples. The reliable region evolves dynamically using the fuzzy 

inference with the addition of new sample and the verification of predication accuracy of 

the surrogate model. The reliable regional Kriging surrogate adaptive and the infilling 

sampling strategy combining the exploitation strategy and the maximum expected 

improvement criteria have shown superior sampling efficiency and searching robustness in 

various benchmark test functions. EORKS provides superior results even in high-

dimensional benchmark functions for both a smooth function such as 20-D Sphere function 

and a noisy function such as 20-D Ackley function at a much less sampling cost. A 

satisfactory quasi-optimum at a lower sampling cost is preferred considering the tolerances 

of variables in engineering applications. The truss optimization example demonstrates the 

optimality and sampling efficiency of the proposed algorithm, which makes EORKS 

attractive in expensive optimization applications. 
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