
International Journal of Production Research, 2017 
https://doi.org/10.1080/00207543.2017.1356484  

 
Robust design optimization via surrogate network model and soft outer array design 

Jyh-Cheng Yua1, Chaio-Kai Changa, and Suprayitnoa,b 

aDepartment of Mechanical and Automation Engineering, National Kaohsiung First University of Science and 
Technology, Kaohsiung 811, Taiwan, ROC.; bDepartment of Mechanical Engineering, State University of 

Malang, Indonesia 

(Received 27 November 2016; accepted 12 July 2017; Published online: 28 Jul 2017) 

Robust design searches for a performance optimum with least sensitivity to variable and parameter variations. 
Taguchi method applies an inner array for control factors and an outer array for noise factors to estimate 
the Signal-to-Noise ratio (S/N). However, the cross product arrays impose serious cost concerns for expensive 
samplings. Also, rigorous control of noise factors to pre-set levels is impractical in industrial applications. 
This study presents a soft computing-based robust optimization that merges control and noise factors into a 
combined experimental design to establish a surrogate using artificial neural network. Genetic algorithm is 
applied to search in the sub-space of control factors in the surrogate with a soft outer array to estimate the 
S/N served as the evolution fitness. Performance variations due to the tolerances of control and 
uncontrollable factors can then be estimated without conducting actual experiments. The verifications of the 
predicted optima become additional learning samples to refine the surrogate, and the iteration continues until 
convergence. The robust optimization of a micro-accelerometer with maximized gain is used as an illustrative 
example. The proposed algorithm provides a superior robust optimum using a much smaller sample and less 
controlling cost compared with Taguchi method and a conventional response surface method. 
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1. Introduction 

Engineering designs are subject to the variations of manufacturing, operational conditions, and property deterioration. 
Quality engineering aims to ensure the performance to specification despite these variations. Tolerance control 
reduces performance deviation by tightening the tolerances of design parameters, which often results in cost increase. 
Robust design such as Taguchi method (Taguchi, 1978) considers the influence of life-cycle uncertainties and applies 
parameter design to search for the optimum with quality performance. Taguchi method is adapted from fractional 
factorial experiments featuring signal-to-noise ratio (S/N), orthogonal arrays (OA), and analysis of means (ANOM). 
The optimal combination of parameter levels with maximum S/N is identified from the effect analysis to improve 
the average performance and at the mean time to reduce the performance deviation. Many successful applications 
had been reported in the literature (Gamage et al. 2014, Irad 2005, Sun et al. 2015, Lin and Yang 2017). Ouyang et 
al. (2016) argued that parameter uncertainties in noise factors are typically neglected in determining robust input 
settings, and proposed an interval approach to account the parameter uncertainties derived from noise variables and 
response models. Mondal et al. (2014) compared the robustness modelling and the robustness indices including their 
strength, limitation, and applicability under different process conditions. 

For the design problems with analytical models, the propagation of variance method can be applied to reformulate 
the analytic model to integrate the parameter uncertainties (Picheral et al. 2014). However in most engineering 
applications without analytical models, the statistical indices of the response of a design treatment such as the mean 
and variance due to the influence of noise factors have to be estimated using sampling. The sampling strategy using 
experimental design of the noise factors will provide better and efficient estimations than random sampling. The 
Taguchi experimental design adopts a cross array design consisting of an inner orthogonal array for the control 
factors and an outer array for the noise factors to estimate the S/N of a design treatment due to the life-cycle 
uncertainties. Noise factors such as manufacturing errors, variations of parameter, deterioration, and uncertainties of 
operational conditions are arranged in a fractional factorial array to ensure a symmetric distribution of a small sample. 
The use of outer array to estimate the distribution of design performance in product life cycle is theoretically sound; 
however, the control of noise factors to a specific preset level in the outer array is expensive and impractical in 
engineering applications. 

Despite the popularity in industrial applications, some also commented on the limitations and inefficiencies of 
the Taguchi method (Maghsoodloo et al., 2004). Reducing the number of experiments and sampling costs is very 
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important in robust engineering optimization. The total number of the Taguchi experimental design is the product of 
the sizes of inner and outer arrays, which multiplies rapidly as the number of factors increasing. For instance of four 
three-level control factors and six two-level noise factors, an L18 inner array and an L8 outer array will require at 
least 144 experiments in total. The number of experiments and the high controlling cost in outer array become a 
liability for the robust design of engineering application using Taguchi method. Also, Taguchi’s parameter design 
assumes a linear model and uses the analysis of means (ANOM) to find the optimal factorial combination that is 
sensitive to interaction effects, and the optimum is constrained to the preset level of control factors. Any missing 
data and deviation from the level control in the experimental design will result in analytical difficulties. 

Surrogate-based optimization is an effective alternative that replaces the engineering system with an approximate 
surrogate model trained from the sampled data to predict the system response (Bhattacharya 2013, Forrester and 
Keane 2009, Tenne 2012). Typical surrogate techniques include Polynomial Response Surface Method (RSM) (Bota 
et al. 2000 and Moyo et al. 2003), Kriging (Bhattacharya 2013), and Artificial Neural Network (Zeidenberg 1990). 
The optimum can then be predicted by applying an optimizer to the surrogate model without direct interaction with 
the engineering system. However, the generality of the surrogate is directly related to the number and distribution of 
samples. Since large initial samples are not economically feasible to industrial applications, many literatures 
suggested progressive modeling and iterative search (Jin et al. 2002, Yu and Juang 2010). Design of experiments is 
first applied to establish the initial surrogate followed by sequential infilling sampling (Forrester and Keane 2009, 
Parr et al. 2012) to distribute new sample(s) at promising areas in an iterative fashion to improve the regional 
accuracy of the progressive surrogate. 

The applications of the surrogate-based optimization to robust design have to provide the estimation of response 
distribution due to noise factors. Some (Yeniay et al. 2006, Hou and Zhang 2017) combined Taguchi’s experimental 
design and response surface methods to predict the robustness index such as mean, standard deviation, and S/N. A 
quadratic polynomial RSM model is often adopted in applications as a surrogate and an optimizer is applied to search 
for the robust optimum. Some suggested more realistic and complex models such as Kriging, Radial Basis Function 
(RBF), and Radial Basis Function Neural Network (RBFNN) to estimate the mean and variance of the highly 
nonlinear input/output response (Elsayed and Lacor 2014). Dual response surface methods (Vining and Myers 1990) 
constructed one model for the mean and another for the variance of the system response from crossed OA 
experiments. In contrast, single response surface methods establish a surrogate model to estimate the robustness 
metrics such as S/N directly (Dellino et al. 2012).  However, the direct use of the cross array design for the 
estimation of the robustness index will impose a high sampling cost on engineering applications. Köksoy (2008) 
suggested a combined array consisted of control and noise variables to model the response using a quadratic 
approximation, and estimated the response variances using the propagation-of-error modeling. A robust optimum 
can then be derived by minimizing the mean square error (MSE) criterion based on Taguchi’s average quality loss 
(Lin and Tu 1995). However, the selection of polynomials is challenging for a complex engineering system. Also, a 
second-order response surface model may not be sufficient, but high order polynomials will significantly increase 
the minimal number of experiments required as the number of factors increase. 

Artificial neural networks (ANNs) are a family of statistical learning models inspired by biological neural 
networks consisted of interconnected "neurons" which send messages to each other. The numeric weights of 
connections can be tuned using the learning samples to establish a surrogate model to predict system response. ANN 
is often applied to establish a surrogate model of complex systems (Chen et al. 1998, Sarve et al. 2015). To ensure 
the quality of sample distribution, orthogonal arrays are often introduced to the design of training experiments 
(Benardos and Vosniakos 2002, Su et al. 2012). However, the feature of Taguchi’s robust design scheme considers 
the influence of noise factors on performance distribution and uses outer array to estimate the S/N of a parameter 
design. Wang et al. (1998) applied the cross array experiments to set up a multilayer feedforward neural network to 
predict mean and variance of the response for a parameter design. A robust design analysis is then constructed on 
the basis of the neural network. However, the ANN surrogate model considers only control factors. High sample 
number and controlling cost due to the use of outer array are still unaddressed issues. Some surrogate-based 
optimization proposed to include both control and noise factors into a single planned experiments by a combined 
array approach to reduce the number of experiments, and apply the propagation of error modeling to estimate the 
variances (Köksoy 2008). 

This paper proposes a soft computing-based robust optimization methodology for engineering applications with 
expensive experimental samples. A surrogate model using artificial neural network is first established from a 
combined experimental design with both design variables and parameters. A soft outer array is introduced to estimate 
the robustness measure that served as the design fitness for the evolutionary search in the subspace of control factors. 
The robust design of a piezoelectric micro-accelerometer with maximized measurement gain is used as a case study 
to illustrate the merits of the proposed optimization scheme. 

2. Robust optimization using surrogate network model 

The Taguchi experimental design applies a cross array design consisted of an inner array for control factors and an 
outer array for noise factors. The number of the cross array design will multiply dramatically. Also, rigorous control 
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of noise factors to specific pre-set levels in outer array will be impractical and expensive in engineering applications. 
To cope with the constraints of Taguchi method, this study proposes a soft computing-based robust optimization 
methodology. Both control and noise factors are merged into a combined experimental design that serves as learning 
samples to set up a surrogate model using artificial neural network. Evolutionary optimizer is applied to search in 
the subspace of control factors of the ANN surrogate for the robust optimum. A soft outer array is introduced to the 
parameter design to estimate the S/N using the surrogate that served as the fitness in the evolutionary optimization. 
The searched optimum is verified using the engineering system and introduced to the learning samples to retrain the 
surrogate. The process iterates until the convergence of the robust optimum. The complete flow chart of the proposed 
scheme, surrogate-based robust optimization (SURO), is shown in Fig. 1 which will be elaborated in the following 
sections. 
 

Combined Experimental 
Design

Neural Network
as Surrogate Model

Robust Optimum

Training Samples

GA search in the 
Subspace of 

control factor

Convergence of 
Searched optimum

Verify the searched optimumStopping criteria of GA

Soft Outer Array

S/N prediction

Yes

No

No

Yes

 
Fig. 1 Flow chart of Surrogate Robust Optimization (SURO) 

2.1. Neural network surrogate from a combined experimental design 

This study applies a combined experimental design as the training samples for a surrogate model using ANN. The 
noise factors due to manufacturing tolerances and deterioration of control factors can be estimated from the surrogate 
model, and thus can be neglected in the experimental design to reduce the number of experiments. For the example 
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of four three-level control factors: A, B, C, D and six two-level noise factors, the noise factors include four 
manufacturing tolerances of control factors: NA, NB, NC and ND, an outer noise factor T, and the variation of a system 
parameter P. A typical Taguchi experimental design requires an L18 inner array and an L8 outer array, which will 
account for at least 144 experiments in total. The combined experimental design will consider only six independent 
factors: A, B, C, D, T, and P, which can be deployed in a smaller fractional factorial of three-level such as L18 
orthogonal array. 

The training samples of ANN often include learning samples and validation samples (Zeidenberg 1990). The 
error of the validation samples are used as the criteria of early stop to prevent overfitting of network. All the control 
factors are selected as three-Level in this study for the experimental design of leaning samples. The validation 
samples suggests a two-level design that is selected in between the levels of the learning samples. For the previous 
learning samples of six factors, the smallest validation samples could be a L8 orthogonal array. Larger orthogonal 
arrays can be adopted with better prediction accuracy for the trained surrogate at the expense of a higher sample cost. 
The experimental designs ensure even distribution of training samples. However, the level settings are used as a 
reference and exact control to the designated levels are not required. Since the parameter values and the 
corresponding response of each sample will serve as the training samples of ANN, the exact values even different 
from the preset level can still be used to train the network surrogate. 

2.2. Estimation of design robustness using soft outer array 

The surrogate model can estimate the system response for a given instance of control and noise factors. Since the 
parameter design considers only the control factors, an evolutionary optimizer such as genetic algorithm is then 
applied to search the subspace of control variables for the robust optimum. The design performance of every 
individuals in the population will have a stochastic distribution due to the presence of noise factors. This study 
proposes a ‘soft outer array’ to estimate the S/N of a parameter design using the surrogate model that served as the 
fitness for the evolutionary search of the robust optimum. The performance perturbations due to the noise factors are 
estimated from the surrogate model rather than actual experiments. Depending on the performance requirement, three 
types of S/N adapted from Taguchi’s philosophy of average quality loss are defined as follows: 

1. Smaller-the-better: The designer is interested in minimizing the response. The fitness function is given by 
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2. Larger-the-better: The designer is interested in maximizing the response. The fitness function is given by 
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3. Nominal-the-best: The designer wishes for the response to attain a certain target value. The fitness function 
is given by 
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where yi are the predicted responses from the soft outer array sampling, n is the number of samples in the outer array, 
and m is the design target value. 

Since the response variations in the outer array samples are estimated using the recall of surrogate model rather 
than actual experiments, the number of samples of the soft outer array will not incur additional sample cost. The 
proposed scheme can reduces the number of experiments and the control costs of outer array sampling in the 
evaluation of robustness measure. 

2.3. Iterative robust design optimization 

This study applies GA to be the evolutionary optimizer for robust parameter design. The training samples of the 
ANN surrogate are used to be the initial population of GA search. The surrogate accuracy will depend on the number 
of training samples that will be in proportional to the sampling cost. For expensive optimization, the number of 
samples will be a constraint. This study suggests a smaller initial sample, and improves the surrogate in an iterative 
fashion. Since the generality of the initial surrogate may be inadequate depending on the model complexity and the 
number of training samples, the optimal parameter design provided by the GA search is only a predicted optimum. 
The verification result of the predicted optimum using actual experiment can be used to evaluate the generality of 
surrogate, and serves as an additional learning sample to retrain and refine the surrogate model. The training and 
search process iterates until the convergence of the robust optimum. 
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3. Robust Design of Micro-accelerometer 

3.1. Design and simulation of Piezoelectric Micro-accelerometer 

Robust design of a piezoelectric micro-accelerometer which involves in complicated sequential fabrication 
procedures serves as an illustrative example for the application of proposed scheme SURO. The design objective is 
to increase the measurement gain and quality. The sample piezoelectric micro-accelerometer in this study consists 
of four symmetric beam suspensions with eight piezoelectric transducers and a seismic mass as shown in Yu and 
Lan (2001). Two piezoelectric thin film transducers are patterned on each suspension beam. One is near the fixed 
end and the other is near the seismic mass. The piezoelectric transducer is composed of an upper electrode, a 
piezoelectric thin film, and a lower electrode.  

This study considers only the first vibration mode because the resonant frequency of the second vibration mode 
is about twice that of the first vibration mode. The supporting beams deflect symmetrically as shown in Fig. 2(a) for 
the first vibration mode. All the outer transducers are of the same bending direction which is opposite to the inner 
transducers. On the other hand, in the second vibration mode as shown in Fig. 2(b), two beams are subject to 
asymmetric bending and the other two beams are subject to torsion. The generated charge due to torsion is negligible 
compared with that due to bending. The proposed design suggests that the upper electrodes of the outer transducers 
are connected with the lower electrodes of the inner transducers, and the lower electrodes of the outer transducers 
are connected with the upper electrodes of the inner transducers, as shown in Fig. 3(a). The interconnected design 
will double up the transducer gain for the first vibration mode while cancel out the charge due to the second vibration 
mode and unexpected noises to increase the measurement selectivity (Yu and Lan 2001). 

The device can be fabricated from the wet etching of {100} SOI silicon (Seidel et al. 1990) and dry etching of 
suspension beams (Sze 1994). The structure variables considered here include the length of beam suspension lb, the 
width of beam suspension wb, the thickness of beam suspension tb, the length of the seismic mass lm and the thickness 
of the seismic mass hm. Typical frequency bandwidth, using ±5% as an accuracy requirement, is bound between 3/τ 
and ωn/5 where τ is the time constant of piezoelectric transducer and ωn is the mechanical resonance frequency of 
the sensor structure. Both high gain and wide frequency bandwidth are desired. However, lower resonance frequency 
increases sensor gain but reduces frequency bandwidth. A trade-off has to be considered between wide frequency 
bandwidth and high gain.  

The design problem consists of five control factors and eleven noise factors. The noise factors include the 
manufacturing tolerances of microstructure, the uncertainties of material properties, and the variation of signal 
frequency. The fabrication of the device is very expensive and it is difficult to control the noise factors at the specified 
level in outer array experiments. This study applies the numerical simulations using ANSYS for sensor gain to 
illustrate the applications of robust design.  

 
 (a) (b) 

Fig. 2 Schematic vibration of the sample accelerometer (a) first (symmetric) vibration mode (b) second (asymmetric) 
vibration mode  

The initial dimensional design of the sample device is as follows: lb=400, wb=200, tb=30, lm=600, and hm=200 
(μm) respectively. The ends of the supporting beams are assumed rigid. The FEM model uses only one quarter of 
the structure and pertinent boundary conditions because of design symmetry to reduce the simulated time. A 
convergence analysis of the number of mesh is conducted first to make sure the size of mesh is fine enough to 
estimate correct gain. Typical material properties of sol-gel PZT (Van Kampen and Wolffenbuttel 1998, Xu et al. 
2000, Yang et al. 2014) are used in this study: PZT Young's Modulus EPZT = 79.36 GPa, PZT Permittivity ε = 
6.4605×10-9 F/m, and PZT Piezoelectric coefficient d31 = -93.5×10-12 C/N. All the piezoelectric thin films are poled 
in the same direction along the thickness. Two transducers are patterned symmetrically on each beam. The 
transducers on the same beam are always of opposite phases as shown in the simulation result. 
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 (a) (b) 

Fig. 3 Schematic deployment of piezoelectric transducers and the dimensional variables of the accelerometer (a) Front View 
(b) Back View. 

3.2. Robust design of Micro-accelerometer using Taguchi Method 

Despite its importance, robust optimization is often overlooked in designing accelerometers for mass production 
because of expensive experimental costs. Design optimization of the accelerometer attempts to maximize the sensor 
gain under the frequency bandwidth requirement. Performance robustness is crucial in the parameter design of 
accelerometers to ensure production quality. The output charge of an ideal accelerometer assumes a linear 
relationship with acting acceleration over the bandwidth as shown in (1). The accelerometer gain is determined 
mainly by the dimensions of beam suspension, seismic mass, transverse piezoelectric charge to stress ratio, and the 
electric subsystem. The increasing of the sensor gain will be at the expense of a lower resonant frequency that will 
reduce the application bandwidth. For a given bandwidth requirement, we would like to search for the dimensional 
design of an accelerometer with a high gain and linearity despite possible manufacturing errors. The optimization 
problem can be treated as a larger-the-better problem using Taguchi method. The design objective is to maximize 
sensor gain  and to reduce the gain deviation due to manufacturing, uncertainties of parameters, deterioration, and 
variations of operation condition.  

ize    (4) 

where  is the sensor gain, e is the output voltage, and iz  is the input acceleration. 

A 3-level factorial design is chosen herein for the five control factors. The parameter values of the initial design 
value are assumed to be the second levels to explore the design space centered at the initial design. Herein a minimal 
orthogonal array of L18 is selected for the control factors. The gain of each treatment of the control factors varies 
when the design is in production. The causes of variability come from manufacturing errors, variations of parameter, 
deterioration, and uncertainties of operational conditions. The initial noise factors considered in this study include 
the dimensional errors of the microstructure, the fluctuations of the Young’s modulus of silicon and PZT thin film 
ESi and EPZT, the dielectric constant ε , the piezoelectric constant d31 of PZT film, and the operating frequency 
ω of the acceleration as shown in Table 1. There are eleven noise factors where the operating frequency ω in required 
bandwidth is treated as four-level because of a wide range with nonlinearity, and the rest of noise factors are taken 
as two-level. A modified L16 orthogonal array with one 4-level column and twelve 2-level columns is selected for 
the noise factors to determine the significance. The noise factors are applied to the initial design of accelerometer to 
estimate the corresponding response of each treatment using the ANSYS simulation. The noise effects plot is shown 
in Fig. 4. The analysis of variance (ANOVA) of the 11 noise factors indicates that the sum of squares (SS) for the 
operating frequency ω and the manufacturing tolerances of wb, and hm are very low. The sum of squares of these 
three noise factors are then pooled into the error term. ANOVA for the reduced model of 8 noise factors in Table 2 
shows that all the noise factors are significant at the level of 5%. Therefore, the L16 outer array is still selected for 
the eight two-level factors in Taguchi’s experimental design to estimate the robustness measure. 

The larger-the-better type of average quality loss is adopted to be the robustness measure as shown in (5), where 
β is the sensor gain, and n is the number of experiments of the outer array for a parameter design. 
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The sensor gains for the crossed experimental design of L18×L16 are simulated using ANSYS to estimate the 
S/N as shown in Table 3. The effect plot of the control factors using ANOM is shown in Fig. 5. ANOVA of the 
control factors in Table 4 shows the significance of all the control factors, and the robust optimum can be derived by 
the parameter design with the maximum S/N as follows: lb3 = 500, wb1 =150, tb2 =30, lm3 = 800, and hm3 = 300 (μm). 
The S/N of the robust design using L16 outer array design and ANSYS analysis is 26.87 dB with a mean gain of 
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24.02 and a standard deviation of 5.55 (10-2 mV/G). The total number of experiments required using Taguchi method 
is 304 including 288 samples for the crossed array experimental design and the verification runs using L16 for the 
robust optimum. 

 

Table 1 Level settings for the initial selection of noise factors 

 Level 1 Level 2 Level 3 Level 4 

ω (Hz) 60 1700 3350 5000 

 lb (μm) -2.0 2.0   

 wb (μm) -2.0 2.0   

 tb (μm) -2.0 2.0   

 lm (μm) -2.0 2.0   

 hm (μm) -2.0 2.0   

 tp (μm) -0.1 0.1   

EPZT (%) -10 10   

ESi (GPa) -2.0 2.0   

ε (%) -10 10   

d31 (10-12 C/N) -10 10   

 
Fig. 4 Effect plot for the initial selection of noise factors 

3.3. Robust design of Micro-accelerometer using RSM 

The RSM approach using a quadratic model is applied to compare with the result of the proposed scheme. A face-
centered central composite design (FCCD) of 27 points with one run of center point is used so the five 3-level control 
factors can be applied as in Taguchi method. The outer array of L16 is used for the eight significant noise factors as 
in Taguchi method to estimate the S/N of each design treatment. The experimental design of FCCD27×L16 as shown 
in Table 5 is used to establish a quadratic response surface model as in (6) for the prediction of S/N. 
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where xT is the vector of control factors [lb, wb, tb, lm, hm]. 
 

The predicted optimum in the design space obtained using quadratic programming is lb = 500, wb =150, tb =25, 
lm = 800, and hm = 300 (μm) with a predicted S/N of 29.81 dB. The verified S/N for the robust design from RSM is 
29.85 dB. The total number of experiments required using RSM is 448 including 432 samples for the crossed array 
experimental design and the verification runs using L16 for the robust optimum. 

Table 2 ANOVA for the reduced model of noise factors 

Source DF Adj. SS Adj. MS F-Value P-Value 

 lb 1 0.172 0.17198 6.5 0.038 
 tb 1 7.2492 7.24923 273.92 0.00 
 lm 1 0.1477 0.14772 5.58 0.05 
 tp 1 6.1703 6.1703 233.15 0.00 
EPZT 1 4.3499 4.34992 164.37 0.00 
ESi 1 0.3009 0.30091 11.37 0.012 
ε 1 4.9218 4.92181 185.98 0.00 
d31 1 7.4935 7.4935 283.15 0.00 
Error 7 0.1853 0.02646   
Total 15 30.9906    

 

Table 3 FEM simulation result of the Taguchi cross array experimental design (L18L16) of piezoelectric micro-
accelerometers 

L18 
lb 

(μm) 
wb 

(μm) 
tb 

(μm) 
lm 

(μm) 
hm 

(μm) 

Average Gain*
βaverage 

(10-2 mV/G) 

Standard  
Deviation* 

(10-2 mV/G) 

S/N** 
(dB) 

1 300 150 25 400 100 2.56 0.55 7.61 
2 300 200 30 600 200 4.59 0.97 12.69 
3 300 250 35 800 300 6.46 1.36 15.66 
4 400 150 25 600 200 11.27 2.40 20.49 
5 400 200 30 800 300 14.27 3.00 22.54 
6 400 250 35 400 100 1.38 0.29 2.23 
7 500 150 30 400 300 5.32 1.12 13.98 
8 500 200 35 600 100 4.47 0.94 12.46 
9 500 250 25 800 200 16.52 3.51 23.81 

10 300 150 35 800 200 8.75 1.84 18.30 
11 300 200 25 400 300 3.21 0.69 9.58 
12 300 250 30 600 100 2.68 0.57 8.00 
13 400 150 30 800 100 10.51 2.21 19.89 
14 400 200 35 400 200 2.06 0.43 5.72 
15 400 250 25 600 300 8.29 1.76 17.81 
16 500 150 35 800 300 18.00 3.77 24.57 
17 500 200 25 400 100 3.62 0.77 10.62 
18 500 250 30 600 200 6.45 1.36 15.65 

* Average and standard deviation of sensitivities are estimated using L16 of significant noise factors 
** Larger-the-better S/N using equation (5) 

Table 4 ANOVA for the control factors 

Source 
DF Adj. SS Adj. MS F-Value P-Value 

lb 2 71.791 35.896 281.41 0.00 
wb 2 41.014 20.507 160.77 0.00 
tb 2 63.392 31.696 248.49 0.00 
lm 2 355.369 177.685 1393.01 0.00 
hm 2 49.486 24.743 193.98 0.00 

Error 7 0.893 0.128   
Total 17 709.945    
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Fig. 5 Effect plot for the S/N of accelerometer gain 

 

Table 5 FEM simulation data of the cross array design using a face-centered central composite design of 27 points and L16 
to estimate S/N for the RSM using a quadratic model 

L18 
lb 

(μm) 
wb 

(μm) 
tb 

(μm) 
lm 

(μm) 
hm 

(μm) 

Average Gain*
βaverage 

(10-2 mV/G) 

Standard  
Deviation* 

(10-2 mV/G) 

S/N* 
(dB) 

1 300 150 25 400 300 4.09  0.86  11.69  
2 300 150 25 800 100 9.32  2.00  18.82  
3 300 150 35 400 100 1.29  0.23  1.81  
4 300 150 35 800 300 10.27  1.89  19.82  
5 300 250 25 400 100 1.52  0.31  3.11  
6 300 250 25 800 300 11.84  2.52  20.91  
7 300 250 35 400 300 1.40  0.25  2.51  
8 300 250 35 800 100 3.01  0.56  9.15  
9 500 150 25 400 100 4.22  0.87  11.99  

10 500 150 25 800 300 33.09  7.09  29.83  
11 500 150 35 400 300 3.89  0.70  11.39  
12 500 150 35 800 100 8.37  1.55  18.03  
13 500 250 25 400 300 4.59  0.95  12.72  
14 500 250 25 800 100 9.83  2.09  19.30  
15 500 250 35 400 100 1.64  0.29  3.89  
16 500 250 35 800 300 10.63  1.94  20.11  
17 300 200 30 600 200 4.38  0.85  12.38  
18 500 200 30 600 200 7.57  1.46  17.12  
19  400 150 30 600 200 7.80  1.51  17.38  
20  400 250 30 600 200 4.84  0.93  13.24  
21  400 200 25 600 200 8.35  1.76  17.89  
22  400 200 35 600 200 4.49  0.81  12.63  
23  400 200 30 400 200 2.57  0.49  7.76  
24  400 200 30 800 200 11.02  2.15  20.38  
25  400 200 30 600 100 3.88  0.75  11.30  
26  400 200 30 600 300 7.26  1.40  16.76  
27 400 200 30 600 200 5.95  1.15  15.03  

* Estimations using L16 outer array for the eight significant noise factors 
 

3.4. Robust design of Micro-accelerometer using SURO 

Instead of the cross array design in the Taguchi experimental design, this study integrates control and noise factors 
into a combined orthogonal array that serves as training samples for a surrogate model using ANN. All factors are 
selected as three-Level for the leaning samples, and two-level for the validation samples. The level settings of the 
validation samples are selected in between the levels of the learning samples as shown in Table 6. Total 11 factors 
including control factors of lb, wb, tb, lm, hm and six noise factors of ω, tp, Ep, Esi, ε1, d31 are arranged in a combined 
orthogonal array of L27 as the learning samples and L16 as the validation samples. Although the operating frequency 
ω is not significant to the sensor gain from the ANOVA in section 3.2, this study still includes ω in the surrogate 
since the inclusion of the factor will not increase the size of training samples. 
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Table 6 Factors and levels for the experimental design of training samples. 

  Learning samples Validation samples  

  Level 1 Level 2 Level 3 Level 1 Level 2 

 Length of beam suspension lb 300 400 500 350 450 
 Width of beam suspension wb 150 200 250 175 225 
 Thickness of beam suspension tb 25 30 35 27.5 32.5 
 Length of the seismic mass lm 400 600 800 500 700 
 Thickness of the seismic mass hm 100 200 300 150 250 
 Frequency ω 60 2500 5000 1250 3750 
 Thickness of PZT thin films tp 0.9 1 1.1 0.95 1.05 
 PZT Young's Modulus EPZT 71.42 79.36 87.3 75.54 83.33 
 Silicon<100> Young's Modulus ESi 167.8 170 171.8 169.3 170.3 
 PZT Permittivity ε (10-9F/m) 5.81 6.46 7.11 6.14 6.78 
 PZT Piezoelectric coefficient d31 (10-12 C/N) -103.5 -93.5 -83.5 -98.5 -88.5 

 

Table 7 L27 FEM simulation data of the learning samples of ANN 

L27 
lb 

(μm) 
wb 

(μm) 
tb 

(μm)
lm 

(μm) 
hm 

(μm) 
ω 

(Hz)
tp 

(μm)
EPZT 

(GPa)
ESi 

(GPa)

ε 

(10-9 

F/m)

d31 

(10-12 
C/N) 

Gain 
(10-2 mV/G)

1 300 150 25 400 100 60 0.9 71.42 167.8 5.81 -10.35 2.565 
2 300 150 25 400 200 2500 1.0 79.36 170.0 6.46 -9.35 3.329 
3 300 150 25 400 300 5000 1.1 87.30 171.8 7.11 -8.35 3.985 
4 300 200 30 600 100 60 0.9 79.36 170.0 6.46 -8.35 2.609 
5 300 200 30 600 200 2500 1.0 87.30 171.8 7.11 -10.35 4.933 
6 300 200 30 600 300 5000 1.1 71.42 167.8 5.81 -9.35 6.045 
7 300 250 35 800 100 60 0.9 87.30 171.8 7.11 -9.35 3.224 
8 300 250 35 800 200 2500 1.0 71.42 167.8 5.81 -8.35 4.784 
9 300 250 35 800 300 5000 1.1 79.36 170.0 6.46 -10.35 7.767 
10 400 150 30 800 100 2500 1.1 71.42 170.0 7.11 -10.35 10.390 
11 400 150 30 800 200 5000 0.9 79.36 171.8 5.81 -9.35 15.198 
12 400 150 30 800 300 60 1.0 87.30 167.8 6.46 -8.35 18.388 
13 400 200 35 400 100 2500 1.1 79.36 171.8 5.81 -8.35 1.750 
14 400 200 35 400 200 5000 0.9 87.30 167.8 6.46 -10.35 2.243 
15 400 200 35 400 300 60 1.0 71.42 170.0 7.11 -9.35 2.010 
16 400 250 25 600 100 2500 1.1 87.30 167.8 6.46 -9.35 5.941 
17 400 250 25 600 200 5000 0.9 71.42 170.0 7.11 -8.35 4.549 
18 400 250 25 600 300 60 1.0 79.36 171.8 5.81 -10.35 9.944 
19  500 150 35 600 100 5000 1.0 71.42 171.8 6.46 -10.35 5.672 
20  500 150 35 600 200 60 1.1 79.36 167.8 7.11 -9.35 7.898 
21  500 150 35 600 300 2500 0.9 87.30 170.0 5.81 -8.35 9.036 
22  500 200 25 800 100 5000 1.0 79.36 167.8 7.11 -8.35 11.230 
23  500 200 25 800 200 60 1.1 87.30 170.0 5.81 -10.35 29.618 
24  500 200 25 800 300 2500 0.9 71.42 171.8 6.46 -9.35 19.992 
25  500 250 30 400 100 5000 1.0 87.30 170.0 5.81 -9.35 2.766 
26  500 250 30 400 200 60 1.1 71.42 171.8 6.46 -8.35 2.499 
27 500 250 30 400 300 2500 0.9 79.36 167.8 7.11 -10.35 3.113 

 
The training samples consisted on L27 for learning samples as shown in Table 7 and L16 for validation samples 

are used to establish an artificial neural network using the toolbox of MATLAB. The input nodes of the ANN include 
the eleven factors as listed in Table 6. Two hidden layers are selected for the problem. A preliminary parameter study 
using Taguchi method was set up first to determine the optimal parameters for the training of ANN as follows: two 
hidden layers of 8 and 10 neurons with linear transfer function, Levenberg-Marquardt learning function, and the 
learning rate of 0.01. Adaptive learning network architecture is developed to train a back-propagation neural network 
as the surrogate model. 

Real coded genetic algorithm is applied in this study to search in the subspace of the five control variables of the 
surrogate for the robust optimum with the following parameters:  

1. Initialization:  
(1) Number of population: 50 
(2) Number of new offspring: 50 
(3) Maximum generation: 100 
(4) Parents selection method: roulette wheel selection 
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2. Crossover: single point crossover 
3. Mutation: one point mutation with 0.3 mutation probability 
4. Elitism: keep the best two organisms from the parent population to replace the 

worst two in the offspring. 

The chromosome of every individuals considers only the control variables. A L16 soft outer array is selected to 
accommodate the eleven noise factors as in Table 1. For a given individual, the variations of the sensor gain β due 
to the noise factors can be estimated using the soft outer array to calculate the corresponding S/N from the recall of 
the ANN surrogate. The number of samples and the controlling costs of the outer array are then not a concern of the 
surrogate-based robust optimization since no actual experiment is conducted. Therefore, the operating frequency ω 
and the manufacturing tolerances of wb and hm that were excluded from the outer array in Taguchi method because 
of low significance are included in the soft outer array to better estimate of the stochastic distribution. The calculated 
S/N will become the fitness of individual in the evolution. 

For the example of the initial design lb= 400, wb= 200, tb= 30, lm= 600, and hm = 200 (μm), the soft outer array 
shown in Table 8 is applied to the design treatment to estimate the sensitivities of the 16 samples to calculate the S/N 
of the design. The S/N serves as the fitness in genetic algorithm. The searched optimum will be verified using the 
engineering system, which becomes the additional infilling sample to refine the ANN surrogate. The convergence of 
iterative NN-GA is reached if the last three searched optima are within 1/5000 of the diagonal Euclidean distance of 
the design space.  

Fig. 6 shows a sample iteration result of SURO. The initial surrogate network started from 27 training samples 
and 16 validation samples, and the process converged after 15 iterations with a predicted S/N of 29.38 dB. Since 
only one verification of the nominal response of the predicted optimum is used as additional infilling sample in each 
iteration, the actual S/N of the robust optimum has to be evaluated using additional L16 engineering simulations. 
The verified S/N of the robust optimum is 29.85 dB which is very close to the average predicted value 29.53 dB of 
five runs from the ANN surrogate and the soft outer array. Although the predictions of the mean and standard 
deviation of the sensor gain from ANN are not as close to the verified results due to the surrogate from a relatively 
small set of training samples, the surrogate is good enough to provide an estimate of S/N to reach the robust optimum. 
The total number of experiments will add up to 74 in this optimization run. Table 9 shows the application of SURO 
to the sensor example in five runs, which all converge to the same robust optimum lb= 500, wb= 150, tb= 25, lm= 800, 
and hm = 300 (μm) in average of 80.6 sample required. 
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Fig. 6 Sample iteration of the iterative NN-GA 
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Table 8 Application of the ANN surrogate and the L16 soft outer array to estimate the S/N of a sensor design. 

     ω  60 60 60 60 1700 1700 1700 1700 3350 3350 3350 3350 5000 5000 5000 5000    
     Δlb -2 -2 2 2 -2 -2 2 2 -2 -2 2 2 -2 -2 2 2    
     Δwb -2 -2 2 2 -2 -2 2 2 2 2 -2 -2 2 2 -2 -2    
     Δtb -2 -2 2 2 2 2 -2 -2 -2 -2 2 2 2 2 -2 -2    
     Δlm -2 -2 2 2 2 2 -2 -2 2 2 -2 -2 -2 -2 2 2    
     Δhm -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2    
     tP 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9    
     EPZT 71.4 87.3 71.4 87.3 87.3 71.4 87.3 71.4 71.4 87.3 71.4 87.3 87.3 71.4 87.3 71.4    
     ESi 167.8 171.8 167.8 171.8 171.8 167.8 171.8 167.8 171.8 167.8 171.8 167.8 167.8 171.8 167.8 171.8    
     ε 5.814 7.107 7.107 5.814 5.814 7.107 7.107 5.814 5.814 7.107 7.107 5.814 5.814 7.107 7.107 5.814    
     d31 -103.5 -83.5 -83.5 -103.5 -103.5 -83.5 -83.5 -103.5 -83.5 -103.5 -103.5 -83.5 -83.5 -103.5 -103.5 -83.5    

lb wb tb lm hm No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mean 
Gain 
(10-2 

mV/G) 

Standard
deviation

(10-2 
mV/G) 

S/N 
(dB) 

400 200 30 600 200
NN-

predict 
6.93 6.93 6.97 6.94 6.98 7.00 6.93 6.93 6.94 7.34 6.93 7.10 6.96 6.93 7.04 6.94 6.99 0.11 16.88 

*  Units of factors are as in Table 1 
**  The parameter values of tp, EPZT, ESi, ε, and d31 are the tolerance ranges by applying the specification of tolerances in Table 1 

to the thickness of PZT thin film and the typical material properties used in this study: tp = 1 (μm), Silicon ESi = 169.8 (GPa), 
PZT EPZT = 79.36 (GPa), PZT Permittivity ε = 6.4605×10-9 (F/m), and PZT Piezoelectric coefficient d31 = -93.5×10-12 (C/N). 

 

  



 International Journal of Production Research 13 
 

3.5. Comparison of Results 

The comparison of the robust optimization results using Taguchi method, RSM, and SURO are presented in 
Table 9. The verified mean gain of the accelerometer provided by Taguchi method is 24.02×10-2 mV/G with a 
standard deviation of 5.55×10-2 mV/G. The verified mean gain of the design provided by SURO is 33.75×10-2 
mV/G with a standard deviation of 8.24×10-2 mV/G. The design objective is to increase the sensor gain using the 
S/NSTB as a measure that considers both the mean and standard deviation of response. The robust optimum 
provided by SURO increases the S/N by 11% which stands for a reduction of the average quality loss by 48% 
compared with the one from Taguchi method, and reduced 73% of the number of experiments compared with 
those of Taguchi method. The robust optimization using single RMS derived the same robust optimum as SURO 
but required more than five times of the experiments of SURO. 

Table 9 Comparison of the robust optimal designs and total number of experiments required using Taguchi method, 
RSM, and SURO for the design of micro-accelerometer 

      
Verified result using L16 engineering 

simulations 
 

 lb wb  tb  lm  hm 
Mean 
Gain 

(10-2 mV/G)

Standard 
deviation 

(10-2 mV/G)

S/N 
(dB) 

Total number 
of  

experiments
Initial 400 200 30 600 200 6.27 1.44 15.31 N/A 

Taguchi 500 150 30 800 300 24.02 5.55 26.97 304 
RSM 500 150 25 800 300 33.75 8.24 29.85 448 

SURO 500 150 25 800 300 33.75 8.24 29.85 80.6* 

Optimization using SURO Prediction from ANN surrogate  

1 500  150 25  800  300 30.44 3.17 29.53 80 
2 500  150 25  800  300 31.30 3.13 29.78 93 
3 500  150 25  800  300 29.89 3.07 29.38 74 
4 500  150 25  800  300 30.67 3.26 29.59 80 
5 500  150 25  800  300 29.85 3.10 29.36 76 

* Average number of total samples required in five optimization runs 

4. Conclusions 

This study presents an efficient robust optimization scheme for expensive engineering applications to reduce the 
experimental cost. Taguchi method applies cross array design where well controlled experiments are required for 
parameter using ANOM. However, accurate control of noise level at the designated level of outer array 
experiments may be infeasible. The proposed scheme SURO establishes a surrogate model using ANN from an 
integrated design of experiments for control and noise factors. The experimental design reduces not only the 
number but also the control cost of experiments. Since the exact parameter values in the experiments can be used 
to train ANN, a rough control of parameter value for even distribution of samples is sufficient. The estimation of 
S/N from the soft outer array and surrogate model also greatly reduce the experiment efforts. The application of 
the proposed scheme to the design of a piezoelectric micro-accelerometer shows that the robust optimum derived 
from the iterative GA search and training of surrogate model provides a superior sensor design than Taguchi 
method and a quadratic RSM using a much smaller set of samples. The proposed scheme can be readily applied 
to industrial applications of robust optimization where sampling cost is expensive and a rigorous control of 
factorial level setting of noise factors is difficult.  

Several issues can be addressed in the future study. The proposed scheme suggests a smaller combined array 
consisted of control and noise variables to establish an ANN surrogate, and uses the predicted optimum as 
additional samples to iteratively update the model. The proposed scheme is efficient by search the subspace of 
control variables and adopts a soft outer array to estimate the robustness measure. However, if the system is 
highly nonlinear and the initial samples are not properly selected, the insufficient generality of the iterative 
surrogate may result in a search trapped to a local optimum. A better infilling sampling considering both 
exploitation and exploration sampling will help ensure the global optimality and sampling efficiency. Also, from 
the case study of accelerometer design, SURO adopts Taguchi’s S/N to search for a robust design with higher 
S/N. However, the robust optimum increases both the mean and the standard deviation of the gain. An alternative 
selection of robustness measure such as a weighted sum of the mean and standard deviation can be considered to 
tradeoff performance and quality issues. 
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