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This paper addresses interacting manufacturing errors and their impact on the design 
robustness and constraint activity.  Manufacturing errors often affect design variables with 
characteristic patterns.  This paper defines the Manufacturing Variation Pattern (MVP) to 
represent this characteristic and investigates its effects.  The application of the concept of 
MVP to design optimization leads to an improved robust optimum.  The design of molded 
gears with minimum transmission error illustrates the proposed scheme's effectiveness.  Our 
model readily accommodates correlation among dimensional errors and significantly 
reduces performance variation. 
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1  Introduction 
 
 Recent advances in quality engineering urge designers to 
consider variations that may be related to material properties, 
manufacturing process, and operation conditions.  Quality 
products must perform to specifications despite these variations. 
Taguchi (1978) introduced the concept of parameter design 
which reduces deviation in performance by reducing the 
sensitivity of the design to variations rather than controlling the 
sources.Ó d’Entremont & Ragsdell (1988) and Chang (1989) 
adopted Taguchi’s concept of quality-loss to minimize 
performance variability.  Sandgren (1989), Eggert & Mayne 
(1990), Sundaresan et al. (1991), and Yu & Ishii (1993) 
integrated design performance and variation into the objective 
function.  However, Taguchi’s approach to experimental design 
does not clearly address potential interactions between 
controllable factors. D’Errico & Zaino (1988) extended 
Taguchi’s approach and advocated a modified approximation 
using the Gaussian-Hermite quadrature integration.  Yu & Ishii 
(1993) proposed the Fractional Quadrature Factorial to estimate 
the performance mean and the robustness for applications with 
significant interaction and nonlinear effects. Design variables are 
subject to variations that lead to constraint uncertainties. 
Conventional actively constrained optimum may not be 
statistically feasible.  Parkinson et al. (1993) explored the 
influence of correlated constraints on feasibility and advocated a 
two-step solution to modify the feasible region. Sundaresan et al. 
(1993) compared the efficiency of three different methods that 
incorporate variations in constraints. Most of these studies use 
worst-case analysis and fall short of addressing the variation 
characteristics. 
 This paper focuses on the variations of design variables due 
to interacting errors.  Here, the design variables include 
controllable variables whose values can be selected by designers 
and uncontrollable parameters whose values are fixed as part of 
the specifications. Manufacturing errors often affect design 
variables with characteristic patterns.  These “patterns” are 
particularly important in net shape manufacturing, such as 
injection molding where the dimensional error is largely due to 
shrinkage that simultaneously affects multiple variables.  One 
can no longer assume that variations are independent.  Few 
studies have addressed the interdependency among variations on 
design variables and constraints. This paper introduces the 
concept of Manufacturing Variation Pattern (MVP) to 
characterize the coupled variations. Different designs and 
manufacturing processes have unique variation patterns.  The 
performance variation within the pattern will determine the 

robustness. The paper develops a systematic procedure to 1) 
identify the variation patterns for typical processes; 2) 
approximate performance based on the pattern and 3) develop a 
scheme to find the robust optimum that matches the pattern. The 
design of molded helical gears with minimum transmission error 
serves as an illustrative example. 
 
 
2  Review of Robust Optimization 
 
 2.1 Robust Optimization Modeling. The conventional 
optimization minimizes the nominal performance: 
 
 Minimize y(X) (1) 
 Subject to gj(X) ≤ 0  for j=1,2,...,J (2) 
  hk(X) = 0  for k=1,2,...,K (3) 
  X=(x1, x2,...., xn)T (4) 

 
 The symbol xi represent design variables, such as geometry, 
material, and manufacturing parameters. The objective y(X) is a 
function of xi and will thus have a statistical distribution.  The 
design vector X is subject to inequality constraints gj(X) and 
equality constraints hk(X).   Probabilistic optimization (Siddall, 
1984) takes into account the uncertainties of variables and 
minimizes the expected mean of the objective. 
 

 Minimize y  E y X   y(X )  p X   dX
X

X

  (5) 

 where p(X) is the joint probability function of X 
 
 However, this model does not address performance 
variation.  Chen et al. (1996) applied the goal programming 
approach and used the lexicographic minimum principle to model 
these two objectives at their respective priority levels.  Yu & Ishii 
(1993) adopted the concept of statistical worst case, and 
suggested the objective consisting of the expected performance 
and a weighted standard deviation to seek the robust optimum. 
 
 F(X) =y+*y  (6) 

 where is termed the Quality Coefficient 
 
 The objective F(X) represents the statistical worst response 
at the confidence level corresponding to   if the distribution of 
F(X) is near normal., i.e., the selection of  controls the balance 
between target value and variation.  Higher weight on DI leads to 
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smaller variation, while a lower value shifts the design to the 
probabilistic optimum. 
 
 2.2 Estimations of Expected Mean and Variance.  The 
evaluation of the objective function in robust optimization often 
requires information of the expected means and the variances of 
performance.  The exact evaluations involve a computationally 
expensive integration with the joint probability function of 
control variables. The Taylor expansion approximation leads to 
the following: 
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 where M  E (x1, ...., xn )  (1, 2, ...,n )  

  Var(xi) is the variance of xi. 
  Cov(xi, xj) is the covariance of xi and xj 
  
 These approximations require the evaluation of second 
response derivatives.  If the evaluation involves complex 
simulations or experiments, the computational process will be 
prohibitive.  To reduce the evaluation complexity, Yu & Ishii 
(1993) proposed a zeroth order Fractional Quadrature Factorial 
Model that combines fractional factorial and Gaussian-Hermite 
integration. Quadrature Integration provides superior 
approximations even if the model contains significant interaction 
and non-linearity effects. 
 
  y  EP  Wj  yj

j1

N

  (9) 

  y
2  DI2  Wj  y j  E(y) 2

j1

N

  (10) 

 where N=3n 

  Wj=w1*w2...*wn 

wi are the weightings of design variable xi at their 
respective levels 

EP (Expected Performance) is an estimate of 
expected mean 

DI (Deviation Index) is an estimate of the 
standard deviation of performance 

 
 
3  Manufacturing Variation Patterns 
 
 3.1 Definition.  Manufacturing errors often induce scatter to 
design variables that may be correlated.  Most robust design 
schemes to date use the worst case region (WCR) to represent the 
variation.  Consider two independent normal variables.  
Conventional worst case regions use the Bonferroni method 
(Rawlings, 1988).  The overall confidence coefficient uses the 
product of all the univariate confidence coefficients and does not 
take into account the joint distribution of the variables. Figure 
1(a) shows that the intersection of two 97.5% univariate 
confidence intervals leads to a rectangular region with a 
simultaneous confidence coefficient of 0.95.  It would be 
misleading to interpret the rectangular intersection as a joint 
confidence region since some designs inside the pattern are 
unlikely combinations of the design variable.  The variation 
pattern should be the possible combination of the variables at the 

specified probability. This paper proposes the concept of the 
Manufacturing Variation Pattern as follows: 
 
Definition 1: Manufacturing Variation Pattern (MVP) 

Manufacturing Variation Pattern is a set of samples that 
belong to the (1-)* 100% joint confidence region of the 
nominal design.  MVP(1-) denotes the space of possible 
parameter combinations at the confidence coefficient of 
(1-) where  indicates the probability of the design 
distribution outside the variation pattern. 
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Figure 1.  Worst case region and Manufacturing Variation 
Patterns 

 
 The distributions of the design variables determine the shape 
of the MVP.  The pattern will be a rectangular solid only if the 
distributions of the design variables are uniform.  The design 
variables assume normal distributions in many manufacturing 
processes, which result in the MVP of an orthogonal ellipsoid 
(Johnson & Wichern, 1988).  The confidence coefficient (1-) 
determines the size of ellipsoid.  Figure 1(a) shows the 
MVP(0.95) of two independent normal variables.  The covered 
areas of WCR and MVP are quite different even if the variables 
are independent. Variation correlation changes the orthogonality 
of the MVP.  If the variations are perfectly correlated, one can 
identify a relationship between the variations of xi.  The 
corresponding MVP becomes a line or a curve.  Partial correlation 
between design variables changes the MVP to an oblique 
ellipsoid.  The axes of the ellipsoid show the direction of 
correlation between design variables.  Figure 1(b) shows a typical 
pattern for a positively correlated MVP.  Design robustness and 
feasibility are directly related to the variation pattern of design 
variables.  Engineers should study the correlation among the 
variables, since erroneous assumptions will lead to inferior 
designs. 
 
 
 3.2 Manufacturing Variation Patterns for Typical 
Processes.  The orthogonal ellipsoid represents a typical MVP 
for conventional processes such as lathe-turning, grinding, and 
milling.  The distributions of the part dimensions are often 
normal and independent.  Dimensions W and D of the 
lathe-turned shaft in Figure 2 are typical examples.  However, 
many post-machining processes such as heat treatment will 
change the independence among variables, e.g., dimensions W 
and D of the shaft will distort after through hardening. The 
volume change due to phase transformation lead to dimensional 
distortions, but interactions of thermal and transformation 
stresses further complicate the matter.  According to Ameen’s 
Rule (1940), dimensional changes resulting from temperature 
induced stresses will cause the shape of a component to become 
more spherical, which introduces a negative correlation between 
W and D.  Figure 2 presents the variation pattern of the heat 
treated shaft taken from actual production data.  The hardening 
processes consist of a furnace heating and a solution quenching.  
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The shaft is then tempered to reach the hardness requirement.  
The MVP clearly shows a negative correlation between the width 
and the spline diameter over pins. 
 
 The dimensional changes of molded or die-cast parts have 
another correlation pattern.  Volumetric shrinkage  affects the 
dimensional changes of plastic parts.  If the material is 
homogeneous and the cooling and packing variations are 
negligible, the linear shrinkage rate will be homogeneous and 
approximately 1/3.  For more complex parts such as a plastic 
switch housing (Busick, 1994), the variations of packing 
pressure, mold temperature, melt temperature, and the interaction 
of geometric features become significant.  Figure 3 shows the 
MVP of production parts.  Dimension x1 exhibits primarily linear 
shrinkage, and dimension x2 exhibits both linear shrinkage and 
warpage.  The oblique pattern shows a strong positive correlation 
between x1 and x2.  
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Figure 2.  Heat treated spline shaft and the MVP(0.95) from the 
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Figure 3.  Plastic switch housing and the MVP (0.95) from 

experimental data 
 

 3.3 Characterizing the Manufacturing Variation 
Patterns.  This paper applies the multivariate statistical 
techniques (Johnson & Wichern, 1988) to characterize the 
variation patterns.  Typical mass production processes usually 
have well-established statistical information of design variable.  
Consider normal variables xi with means i and 

variance-covariance ij, the formulation for the n dimensional 

ellipsoid of the MVP(1-) is as follows: 
 
 (X  M)T 1(X  M)  (n,)

2  (11) 

 where X = [x1,....,xn]T including controllable variables 
  and uncontrollable parameters  
  M = E[x1,....,xn]T = [1, 2,..., n]T 
   is the variance-covariance matrix of X 

2
(n,) is the value of the chi-squarevalue with n 

degrees of freedom that leaves 
probability  in the upper tail.

 
 The axes of the ellipsoid lie in the directions of the 
eigenvectors, ei, of .  The lengths of the principal axes are equal 

to  
2

),(n , where i are the eigenvalues of . If the variables xi 

are independent, the formulation can be simplified as follows: 
 

 xi  i
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 The formulation corresponds to an orthogonal ellipsoid with 

the lengths of the principal axes in  
2

),( .  In practice, we use 

the sampling average ix  to estimate i, and the sampling 

standard deviation si to estimate i. The correlation coefficient rik 
measures the strength of the linear association between two 
variables, xi and xk. 
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 (13) 

 
 The variables assume independence if the corresponding 
correlation coefficient r is not significantly different from zero.  
The sign of r indicates the direction of the association: positive r 
implies a tendency for both values to be larger or smaller than 
their average values together, and negative r implies a tendency 
for one value to be larger than its average when the other is 
smaller than its average.  If r is close to 1 or -1, a functional 
relation may exist between these two variables.  Figure 4 shows 
the MVP(0.50) and the MVP(0.95) of a bivariate normal example 
with common variance. For variables with other distribution 
patterns or nonlinear correlation, their MVPs will be much more 
complicated.  However, the central limit effect of statistics 
suggests that the sampling distributions of many multivariate 
statistics are approximately normal, regardless of the form of the 
parent population.  
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Figure 4.  MVP(0.50) and MVP(0.95) of a bivariate normal 
example 

 
 
4 MVP and Constrained Robust Optimization 
 
 4.1 Design Robustness.  The proposed method combines 
the concept of MVP and the Quadrature Factorial Model (Yu & 
Ishii, 1993) to evaluate the objective function.  For independent 
normal variables, we can directly apply equations (9) and (10) to 
evaluate EP and DI.  For the MVP of correlated variables, a 
decoupling transformation of the variables is required to identify 
the quadrature factorial.  The transformation between these 
coordinates is: 
 
 X  M  [e1 , e2 ,  , en ]Z  (14) 

 where X = [x1,....,xn]T 
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  Z = [z1,....,zn]T 

  M = [1, 2,..., n]T 

  ei are the eigenvectors of the variance- 

  covariance matrix  
 
 The factorial experiments should select the quadrature 
points along the Z axes (Figure 5).  The corresponding high and 

low levels in terms of Z coordinates are 
i3 , where i are the 

eigenvalues of . 
 



x2

x1
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31

32z2

z1
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Figure 5  Transformation of factorial experiments to decouple 

correlated MVP 
 
 4.2 Constraint Uncertainty.  Manufacturing errors 
introduce variations to design variables that propagate to 
constraints. Robust optimization uses statistic techniques to 
extend the definitions of constraints.  A constrained optimum 
should be statistically feasible regardless of constraint 
uncertainties.  This paper defines the robust feasibility as no 
constraint violation within the MVP. Conventional peak 
constrained optimum may contain a large portion of 
unsatisfactory designs (Figure 6a).  One resolution is to move the 
design to the worst-case actively constrained point as shown in 
Figure 6(b), but the worst-case region does not capture the actual 
distribution of design variables.  The constrained solution may 
not be the true optimum as we examine the overlay MVPs in 
Figure 6(b).  The worst-case actively constrained design may be 
over or under constrained depending on the actual variation 
patterns. Parkinson et al. (1993) suggested a modification of the 
feasible region using the first order Taylor’s approximation to 
accommodate the “propagating variation” in the constraints: 
 
 

gi(X ) 
gi

x j

x j
j1

n

  0
 (15) 

The modification becomes uncertain if significant non-linearity 
and variation correlation are present.  The constraints are 
deterministic, but the design variables scatter due to 
manufacturing variations.  The overall probability of feasibility is 
the real concern.  Manufacturing Variation Pattern provides a 
better quantification of constraint uncertainty.  This concept 
formulates the constrained robust optimization as follows: 
 
 Minimize F(X) =y+*y  EP+*DI (16) 
 Subject to E[hk(X)] = 0  for k=1,2,...,K (17) 

   X  MVP(1- ), gj(X)≤0, j=1,J (18) 

 where (1- ) is the confident coefficient of the MVP 
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Figure 6.  Constraint activity for several variation patterns 

 
  Figures 6(c) & 6(d) illustrate examples of the Feasible 
Active constraint.  An inequality constraint is considered 
Feasible Active if the MVP(1-) of the design is inside the 
feasible region and tangent to the original constraint surface 
gi(X).  The design variables X include controllable variables and 
uncontrollable parameters.  Controllable variables vary in the 
design ranges and uncontrollable parameters remain fixed in the 
search of optimum.  The definition of the Feasible Active 
Constraint is as follows: 
 
Definition 2: Feasible Active Constraint 

For design X0 with a given MVP(1-), inequality constraint 
gi(X) is considered Feasible Active at the confidence of 

(1-)*100% if  
 1) X MVP(1-) , gi(X) ≤ 0 

 2) X MVP(1-) , gi(X)=0 
 
 The locus of the centroid of the MVP tangent to the original 
inequality constraint gi(X) composes the Robust Inequality 
Constraint gi

R (X ) .  Confining the designs inside the region 
bound with gi

R (X )  in the search process will ensure that the 
variation patterns are inside the feasible region of the original 
constraints.  However, the details of the application procedure 
still await future investigation. 
 
 
5  Application: Molded Helical Gears  
 
 5.1 Background.  Manufacturing errors and shape 
deformations of gear tooth under load coupled with shaft 
misalignment increase the transmission error drastically.  Gear 
profile modification has been an effective technique to reduce the 
peak-to-peak transmission error (PPTE).  Robust optimization 
seeks the gear designs with the least expected PPTE, where the 
performance is less sensitive to these variations. Welbourn 
(1979) defined the transmission error as “the difference between 
the actual position of the output gear and the position it would 
occupy if the gear drive is perfect (infinite stiffness and conjugate 
teeth).Ó  Profile modification enables the unloading of one 
mating tooth pair when the second pair makes initial contact, 
which lessens the sudden increase and decrease of mesh stiffness 
and reduces the variation of transmission error. Figure 7 
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illustrates the concept of profile modification.  This study uses 
the Load Distribution Program (Houser, 1991) to predict the 
transmission error. LDP characterizes the profile modification 
with two variables: 1) the starting roll angle (eq. 19) and 2) the 
amount of tip relief  .  The modification can be either linear or 
parabolic. 
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Figure 7.  Gear profile modification 

 
 Figure 8 shows the contour plot of the PPTE of the helical 
gears in Table 1.  The plot assumes the parabolic modifications 
with equal amounts of tip relief on the gear and the pinion and a 
fixed 7.6m parabolic lead modification.  The starting roll angle 
of modification on the gear is varied proportionately with the 
pinion. The design is susceptible to manufacturing and 
operational variations.  The manufacturing errors of the tip relief 
and the starting roll angle are approximately 3.8m and 1.5 
degrees respectively. Sundaresan et al. (1991) adopted Taguchi’s 
orthogonal array and the Sensitivity Index in the optimization 
process to achieve a statistical optimum.  The statistical optimum 
shows a slight increase of the nominal PPTE but greatly improves 
the worst case performance, but Sundaresan did not consider 
interaction effects and possible variation correlation.  The 
observation on Figure 8 suggests that any correlation between the 
tip relief and the starting roll angle will result in an oblique MVP 
that introduces different performance variations.  The application 
of our proposed design method extends the previous study to the 
design of molded gears where geometric variables correlate with 
each other due to material shrinkage. 
 

Table 1. Helical Gear Geometry 
 

GEOMETRIC PARAMETERS Pinion Gear 

Transmitted torque  (N-m) 84.76 

Center Distance  (mm) 71.0 

Normal diametral pitch  (1/mm) 0.474 

Normal pressure angle  (degree) 16.0 

Helix angle  (degree) 30.0 

Profile contact ratio 2.02 

Face contact ratio 1.13 

Total contact ratio 3.15 

Number of teeth 18 41 

Face width  (mm) 15.24 15.24 

Outer diameter  (mm) 52.484 101.745

Root diameter  (mm) 39.413 88.674 

Roll angle @ pitch circle  16.70 16.70 
Roll angle @ outer circle  44.09 22.44 
Roll angle @ SAP* 3.63 4.68 

*SAP:  The Start Radius of the Active Profile 
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Figure 8.  Sample contour plot of the peak-to-peak transmission 
errors 

 
 5.2 The Profile Modification of Molded Gears Using 
Robust Optimization. The profile modifications will be 
embedded in the mold designs.  The distribution of part 
dimensions is due to the variations of process parameters such as 
mold temperature, packing pressure, and cooling time, and the 
dimensional variations are coupled because of the material 
shrinkage.  Processes, material properties, and feature 
characteristics affect the correlation level and the variation 
patterns.  Based on industrial practice, this study assumes the 
correlation coefficient between the tip relief and the starting roll 
angle to be 0.7.  The design ranges of the controllable variables 
are as follows: 

1) Starting roll angle of modification on the pinion (p) 
from the Start radius of Active Profile (SAP) to the tip of 
the tooth. 

2) Starting roll angle of modification on the gear (g) from 
SAP to the tip of the tooth. 

3) Amount of tip relief on the pinion tooth (p) from 0 to 

38 (m). 
4) Amount of tip relief on the gear tooth (g) from 0 to 43 

(m). 
5) Amount of lead modification (Lp) at both end faces of 

the pinion tooth from 0 to 13 (m).  The lead 
modification was parabolic with zero at the center of the 
face width.  The amount of modification at both end 
faces of the pinion tooth was assumed to be equal.  The 
gear tooth was unmodified in the lead direction. 

 
 The optimization considers four variations of controllable 
variables and two variations of uncontrollable parameters: 

1) Variation of 3.8 (m) in both the parabolic tip relieves of 
pinion and gear 

2) Variation of 1.5 (degree) in both the starting roll angles 
of pinion and gear 

3) Torque (T) variation of 22.6 (N-m) 
4) Shaft misalignment (S) of 0.0005 mm per mm of face 

width 
 
 The experimental design adopted the 26-3 Fractional 
Factorial augmented with center point (Montgomery, 1991).  
Unlike full factorial design which needs 64 experiments, this 
design uses only nine experiments.  Table 2 presents the 
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experimental settings of the design variables to apprehend the 
output variations.  The variations of the PPTE due to the errors of 
the tip relief and the starting roll angle are nonlinear as shown in 
the contour plot.  The augmentation of the center point provides 
an estimate of the combining effect of the significant quadratic 
terms. We also used the Quadrature Factorial that selects the 
quadrature points as the experimental levels.  The design 
variables assume normal distributions, and the given variations 
represent three times of the standard deviations of the variables.  
The variations of the parameters, transmitted torque and shaft 
misalignment, are independent.  The corresponding quadrature 
levels of the parameters are simply i  3 i

 (Yu and Ishii, 

1994), but the variations of tip relief and starting roll angle of the 
molded parts are correlated due to material shrinkage.  The 
experimental setting of the tip relief and the starting roll angle 
should select the quadrature points along the principal axes of the 
MVP.  The formulation of the MVP(0.95) is shown in Equations 
(20).  Consider the section of the variation pattern on the plane of 
tip relief and starting roll angle of the gear for the simplification 
of illustration.  The application of the procedures illustrated in 
section 3.3 and 4.1 gives the oblique MVP(0.95) and the 
corresponding factorial designs as shown in Equation (21) and 
Figure 9.  
 

Table 2.  Fractional Factorial Array of the molded gear design 
 

26-3+1 p p g g T s 

R1 + - - - - + 

R2 - + - - + - 

R3 - - + + - - 

R4 + + + + + + 

R5 + + - + - - 

R6 + - + - + - 

R7 - + + - - + 

R8 - - - + + + 

R9 0 0 0 0 0 0 
Note:  Ò+Ó the high level,  Ò-Ó the low level 
 Ò0Ó the center level. 

 
 p   p0

 Tp   Tp0

g  g0

 Tg   Tg0

T  T0

s   s0

























T p
2 rpTp 0 0 0 0

rpp Tp
2 0 0 0 0

0 0 g
2 rgTg 0 0

0 0 rgTg Tg
2 0 0

0 0 0 0 T
2 0

0 0 0 0 0  s
2

























1 p   p0

Tp   Tp0

g  g 0

Tg   Tg0

T  T0

 s   s 0

























 (6, 0.05)
2

 

   (20) 
g  g0

 Tg   Tg0











T
0.25 0.443

0.443 1.604







1 g  g0

 Tg  Tg0









 12.6

 (21) 

 
 The optimization process applies the quadrature points of 
the MVP(0.95) to evaluate the objective function of Equation 
(16).  The Quality Coefficient  is set at 2.0 and the objective will 
stand for the worst PPTE at the confidence of 97.7%.  The 
Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric 
method reached the optimum result shown in Table 3.  Peak 
optimization uses the nominal PPTE as design objective and thus 
has the lowest nominal value compared to the robust optimum.  
Due to the non-linearity of model and the correlation among 
design variables, the expected PPTE could be different from the 
nominal value.  The nominal PPTE of the peak optimum is 0.148 
(m), whereas the mean PPTE of the design is 0.499 (m) and the 
statistical worst PPTE of the design could be as high as 1.103 
(m).  The Robust Optimum outperforms the statistical optimum 
from Sundaresan’s procedure; the Robust Optimum reduces the 

expected PPTE by 30% and the performance variation by 49% 
compared with the Peak Optimum. 
 

S
ta

rt
in

g 
R

ol
l A

ng
le

(d
eg

re
e) 2.282 0.595

e1(0.958, 0.286)

e2(-0.286, 0.958)

Tip Relief (m)T0

0

 
Figure 9.  MVP(0.95) and the quadrature points of the molded 

gears/pinions 
 
 

Table 3  Comparison of the Optimization Results 
 

Design Variables Peak Statistical Robust

p (deg.) 11.45 16.57 14.89 

g (deg.) 13.01 12.81 13.19 

p (m) 29.8 26.7 25.3 

g (m) 34.1 29.1 25.4 

Lp (m) 7.2 0.0 3.8 

Nominal PPTE (m) 0.148 0.254 0.419 

Expected PPTE  (EP) (m) 0.499 0.454 0.348 

Std.Dev. of PPTE (DI) (m) 0.302 0.199 0.153 

Objective=(EP+2*DI) (m) 1.103 0.852 0.655 

 
 
6  Conclusion 
 
 This paper addressed the variations of design variables due 
to interacting manufacturing errors. The advocacy of the 
Manufacturing Variation Pattern promotes the understanding of 
the characteristics of manufacturing variation and their effect on 
robust design and constraint activity. Robust optimization based 
on MVP assures the optimality of performance robustness and 
design feasibility especially for applications with correlated 
variations of design variables. The method requires substantial 
amount of statistical information thus must be obtained through 
well thought out design of experiments. 
 
 The design of molded helical gears with minimum 
transmission error illustrated the proposed scheme of robust 
optimization.  The application of the concept of MVP and the 
Quadrature Factorial techniques better estimates the expected 
PPTE and the performance variation despite the correlation 
among dimensional errors due to manufacturing processes.  The 
robust optimum not only contains the least expected PPTE but 
also the minimum sensitivity to the manufacturing variations. 
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