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Abstract—A theoretical model which can reflect the weakening constraint power of the ductile
matrix in the course of creep deformation is established to estimate the development of transient
and steady-state creep strain of a fiber-reinforced metal-matrix composite. This method makes use
of the secant moduli of the elastic-creeping matrix in the construction of a linear comparison
composite, and, when coupled with an energy approach recently proposed by Qiu and Weng
(1992, J. appl. Mech., 59, 261-268), it can also account for the effect of non-uniform stress fields
on the overall creep to a certain extent. The theory is applied to a Borsic/aluminium system to
examine the anisotropic creep behavior along the axial and transverse directions. As compared to
the predictions of Zhu and Weng’s (1990, Mech. Mater. 9, 93-105) mean-field theory and Wang
and Weng’s (1992, ASME J. Engng Mater. Tech. 114, 237-244) local theory (both were based on
the elastic constraint and were intended for the small creep range), the results are close to both
along the axial directions, but along the transverse direction the secant-moduli method is found
to provide a softer response for the composite. A direct comparison to the experimental data
under transverse tension shows that the theory is quite accurate even at 35% of fiber volume
fraction. The theoretical model is finally employed to estimate the growth of the maximum
interfacial tensile stress under a transverse loading with and without a superimposed lateral
compression, and it is found that, such a local tension, which is responsible for the onset of
interfacial cracking, can grow quite significantly during the creep process, especially with the
assistance of the lateral compression.

1. INTRODUCTION

The high-temperature creep strength is known to be the most critical factor for the
design of gas turbine blades in an aircraft engine. Traditionally, these blades are made of
nickel-based superalloys, whereas in recent years both single crystals and polycrystals with
directionally solidified columnar grains have also been used in the hot section of the
engine. The idea to implement the latter class of materials is to remove the presence of
grain boundaries perpendicular to the radial direction so that, under a centrifugal force,
no creep cavitation along such boundaries would develop. The creep behavior of single
crystals and columnar grains are both anisotropic, with the grain orientations deliberately
grown so as to vield the highest possible strength along the loading direction.
Fiber-reinforced metal-matrix composites (MMC) represent another class of potential
high-temperature materials. These composites provide both high strength and high
ductility, and, when the fibers are aligned radially, their strengthening effect is similar to
a polycrystal with columnar grains. Better still, the fabrication process for the MMC is
less restrictive than the growth of columnar crystals, and the strongest fibers can be
chosen for reinforcement. However, unlike the elastic or linear viscoelastic behavior of a
composite, the nonlinear, time-dependent response of a metal-matrix composite is not a
very well understood subject, and yet its safe application undoubtedly demands a sound
theoretical principle which could predict the development of its anisotropic creep strains.
Indeed even for the time-independent (rate-independent) plasticity, theoretical
studies—aside from the finite-element calculations—on the overall response of a
nonlinear composite are beginning to take shape only very recently. In this connection
Talbot and Willis (1985) and Willis (1991) have extended Hashin and Shtrikman’s (1963)
variational principle to the nonlinear composite, and Ponte Castaneda (1991, 1992) has
developed a variational scheme to calculate the bounds (or estimates) of a nonlinear com-
posite from the bounds (or estimates) of a linear ‘‘heterogeneous”’ comparison material.
In a separate development, Weng and his associates (Tandon and Weng, 1988; Qiu and

661



662 H. H. Pan and G. J. WENG

Weng, 1992) have also developed a theory to estimate the elastoplastic behavior of a
composite and porous material. Their idea evolved out of Weng's (1982) earlier work on
polycrystal plasticity, in which the secant moduli of the polycrystalline matrix were used
to characterize its weakening constraint power (Hill, 1965). Initially introduced in the
context of Eshelby’s (1957) equivalence principle and Mori-Tanaka's (1973) method
(Tandon and Weng, 1988), but subsequently with an energy approach to define the
effective stress of the heterogeneously deforming matrix (Qiu and Weng, 1992), this
approach also makes use of a linear comparison composite, but at the outset takes the
elastic properties of the linear matrix to be equal to the secant moduli of the nonlinear
matrix. It turned out that, when the nonlinear matrix is also elastically incompressible, the
estimates on the stress-strain curves of an isotropic porous material containing randomly
oriented spheroidal voids all lie on or below the curve derived from Ponte Castaneda’s
bound of the Hashin-Shtrikman (1963) type. Comparisons with available exact solutions
and finite-element calculations for porous materials and particle-reinforced composites
further point to the quantitative accuracy of this approach (one may refer to Qiu and
Weng, 1992, for other implications).

As in the time-independent plasticity, the constraint power of the ductile matrix in
the time-dependent creep deformation also continues to decrease. This was uncovered
recently by Weng (1993) in his consideration of the auxiliary problem of a single spherical
inclusion embedded in an incompressible Maxwell solid. Such an auxiliary problem still
can not be solved analytically for the present nonlinear problem, and, therefore, to
account for such a weakening effect, we shall also introduce a secant-moduli method to
study the development of creep strains of a fiber-reinforced composite. This method will
be introduced in conjunction with a linear comparison composite and the energy
approach, and the contributions from both transient (primary) creep and steady-state
(secondary) creep will be considered simultaneously.

2. THE SECANT MODULI OF THE ELASTIC-CREEPING MATRIX

Within the dislocation creep regime where structural metals normally operate, the
power-law constitutive equations are suitable for the creep rate. In the triaxial stress state,
these can be most conveniently expressed in terms of von Mises’ effective stress g, and
effective creep strain &£, defined as usual by:

g. = Gojal)"?, & = Geje)'?, (1)
in terms of the deviatoric stress g/; and creep strain &;. Then the effective steady and
transient creep rates may be written as:

e = aog, @)

by = bld - 07 — ],
where a, n, b and d are material constants, derivable from two creep curves at different
stress levels. Constant n is the exponent of the power-law constitutive equation; it charac-
terizes the separation of creep curves at different stress levels. Constant « represents the
magnitude for the steady creep rate, d controls the magnitude of the transient creep
strain, and b signifies the decreasing rate of the transient creep rate. The creep strain &,
in the second equation reflects the influence of strain hardening, and when it reaches the
critical value d - ¢/, the transient creep-rate is taken to be zero. As stress exponent n
typically lies between 3 and 7 for most metals, the time-dependent creep behavior is said
to be nonlinear. The effective creep rate is the sum of the two, & = &5, + €5¢)-

In the two-phase composite we shall refer to the elastic fibers as phase 1 and the
ductile, creeping matrix as phase 0. The elastic bulk and shear moduli of the rth phase will
be denoted by «, and g,, respectively, and its volume fraction by ¢,. When such a system
is subjected to a boundary traction giving rise to a constant stress &;; (an overbar signifies
the averaged value), the initial response is elastic, with an average stress ;; in the rth
phase. The subsequent creep deformation in the ductile matrix would lead to a continuous
stress transfer from the creeping matrix to the elastic fibers, and, therefore, its effective
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Fig. 1. Schematic diagrams of (a) decreasing effective stress, (b) increasing effective strain and (c)
effective stress—strain relation, of the ductile matrix during the time-dependent creep deformation.

stress 0@ will continue to decrease. A schematic diagram for such a change is depicted in
Fig. 1(a). In the meantime its creep strain will continue to develop. Since the total strain
is the sum of the elastic and creep components, the total effective strain of the ductile
matrix, £, as depicted in Fig. 1(b), will also continue to grow. Then, using time ¢ as the
common factor, the effective stress and total effective strain of the ductile matrix are
connected to each other as shown in Fig. 1(c). At time ¢ = 0, it represents the initial elastic
state, whereas o®(1) and £{(¢) represent a subsequent generic state. The secant shear
modulus, u(r), of the elastic-creeping matrix at time 7 is introduced through:

al®(t) = 3uy()e ), A3)

which reduces to the elastic equation initially ¢(0) = 3u,&{”(0). Since creep deforma-
tion of the ductile matrix is incompressible, its secant bulk modulus remains identical to
its elastic counterpart. Then, using Hill’s (1965) short-hand notation, the secant moduli
tensor L of the ductile matrix and the elastic moduli tensor L, of the fibers can be cast
into:

o(t) = (Ko, 2us(1)), L, = Bky, 2uy). 4)

The secant Young’s modulus, secant Poisson’s ratio, and the plane-strain secant
bulk modulus of the ductile matrix, respectively, follow as:

3K — 2u5 "

9%k ﬂs
s 00 L,,5

-, ki = Ko + Tlg- 5
2(3K0 : (S}J ] 0 M0 ( )

—_— v =
(| L] -
3Ko + U 0

3. THE LINEAR COMPARISON COMPOSITE

The metal-matrix composite is taken to consist of homogeneously dispersed cylindrical
fibers of circular cross-section in the ductile matrix, as schematically shown in Fig. 2(a).
Here L, and L, are taken as the elastic moduli tensors of the fibers and the matrix, respec-
tively, and & = f(o., &) represents the constitutive eqn (2) of the metal matrix. This
composite is subjected to a boundary traction giving rise to a uniform stress G;;, and, at
time ¢, the secant shear modulus of the creeping matrix is denoted by y; as defined in (3).

At this instant we introduce a linear comparison composite, as shown in Fig. 2(b),
whose microgeometry is identical to the real one and whose fibers also possess the same
elastic properties. The bulk and shear moduli of the linear matrix are assigned to be x, and
us (since the value of ug decreases continuously it must be updated for the next instant).
This comparison composite is also subjected to the same boundary traction as the real
one, and the average stress and strain state of the constituents in the real composite are
then approximated by those in the linear comparison composite.
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Fig. 2. Schematic diagrams of (a) the real nonlinear, creeping composite and (b) the linear
comparison composite.

The many linear theories for the effective elastic moduli of a fiber-reinforced
composite can now be called for. In particular, the longitudina! Young’s modulus Ej,,
major Poisson’s ratio v{,, plane-strain bulk modulus K3, axial shear modulus uy,, and
transverse shear modulus u3, of the transversely isotropic composite can be written as:
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where Ej, is the corresponding transverse Young’s modulus, and &, the plane-strain bulk
modulus of the fibers.

This set of moduli are the familiar Hill’s (1964) and Hashin’s (1965) lower bounds
if the matrix is the softer phase, and are also the results derived from Mori and Tanaka’s
(1973) mean-field theory. The first four also coincide with those derived by Hashin
and Rosen’s (1964) composite cylinder model. Christensen and Lo’s (1979) u,; may be
used for the transverse shear modulus if needed, but the mean stress of the fibers and
the matrix—to be used later—must also correspond to those of their generalized self-
consistent scheme.

The superscript s added to each of these moduli is meant to underscore their
dependence on the time-dependent secant moduli of the ductile matrix. It is then apparent
that, once the secant shear modulus 4 is determined at time ¢, the overall strain tensor of
the composite follows immediately as:

&) = L;'(t)a, Q)

where L;' is the inverse of the effective moduli tensor L, whose five independent
components are given in (6).

4. DETERMINATION OF gj AND THE ENERGY APPROACH

The determination of u3(¢) requires the knowledge of o{®(¢) and &{”(¢), as depicted
in Fig. 1(c). The elastic component &5 of the effective strain is directly dependent upon
(1) through e£O(1) = (1/3u)al”(t), and, once g{(¢) is given for every instant, the
constitutive eqns (3) would give the creep rate £5(¢), giving rise to the current knowledge
of €5(¢) in an incremental fashion. Thus the determination of u(t) boils down to the
determination of ¢(1).

To this end we note that, unlike in an homogeneous material, the deformation in the
ductile matrix of a two-phase composite is generally nonuniform. As depicted in Fig. (3),
such a nonuniform field is associated with a uniform mean stress G, but is also
accompanied by a locally perturbed stress o/} ®(x), whose volume average over the matrix
phase vanishes. In the context of the mean-field approach the effective stress a@(t) has
traditionally been defined in terms of G alone, following von Mises’ definition as given
by the first part of eqn (1). While such a definition can capture the essence of deformation
under many practical circumstances, it turns out that, if a two-phase isotropic composite
is subjected to a purely hydrostatic loading the mean deviatoric components 54 would
be zero and the two-phase system would never exhibit the nonlinear response. To
overcome such a drawback, Qiu and Weng (1992) recently introduced a new definition for
the effective stress 0@ of a heterogeneously deformed body based on the concept of
distortional energy. Specifically, o is defined from the distortional energy density, so
that the distortional energy of matrix is given by:

2 o’ ®)

5 p—
UO(diswrlional) - 6{15 Te " »
0

X

Fig. 3. Schematic diagram of the nonuniform stress field in the ductile matrix.
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where
| 1
Usistortionay = 5 ai () (x) dV,
2 v, 2#0
)
— 4 — [U,{OJ 1(0) + (appr{ﬂj(x}a,fpffﬂ}(x))]
including the contributions from the mean field /¥ and the locally perturbed field

/" ®(x). The angle brackets - ) here signify the volume average of the said quantity over
its own phase. Thus, the effective stress is in turn defined as:

o = 3605 + (i OWaif O))). (10)

This new definition reduces to the classical one—as in eqn (1)—if the deformation
field is uniform, and, for the case where the mean deviatoric stress 6,}‘0) vanishes—as the
isotropic composite mentioned above—the locally perturbed stress can also contribute to
the yielding process and the deformation behavior of the two-phase system will still be
nonlinear, as desired.

Within this energy framework, we now appeal to the elastic energy of the linear

comparison composite, and note that, under a given &y, it is given by:

1 1 _ vy, _ 1 _
U, = —[ G} — =32 G11(Gyy + G33) + = (G + G33)
0

2 Efz E3,
S B I

— 02033 + —G33 + — (G2 + 13) |- (1)
Has M3 12

On the other hand a direct evaluation of U, from its constituents also leads to:

5 o’ (e (x) dV] (12)

U, = L [ j oP()eP(x)dV + }
Yo

4]

where the strain energy from the matrix phase is composed of the distortional and
hydrostatic components:

1 ©) (1)@ L ©? 4 ©0? pL(O)
3 Loo' (x)e, x)dV = 5 [”5 a, 9x0 —(Grx + {O%k (x)))]. (13)
The stress field in the cylindrical fibers o’(x) and the hydrostatic stress {3 (x) in the
matrix are known to be uniform in Hashin and Rosen’s (1964) composite-cylinder model
for the three boundary-value problems which lead to the first four effective moduli in
eqn (6). As a matter of fact, only under the transverse shear (and therefore the transverse
tensile) loading are these stress fields not uniform. In this light, and when the fiber con-
centration is not high, we shall assume both a“’(x} and o (x) to be uniform [but not the
deviatoric ¢{”(x)], and the contribution of (ok“‘” (x)) to be negligible. Then,

1 m m Ll a-m I _qap
- V=-|—daei" + — s 14
2 il’, U:_,t {X)E (X) d 2\2 . du ar; 9’C1 Okk ( )

and substitution of (13) and (14) into (12) will provide the effective stress for the ductile
matrix:

2 64 T () L | L oz 1 _ay
g, =—|U, — G — G 05 + -0 . 15
o | T T80 T2 gij '0jj O, Tk (15)

where U, is given by (11).
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The mean stress G’ of the rth phase now remains to be determined, but this has
already been solved by Zhu and Weng (1990). For the matrix phase, it is given by:

5.,(0)_i-._i 1 _1_ 1 _%1—21’3 5'—11_2v56’
" _coa“ cipl —ug/uy | \co1 — Ko/, 31— W79 —vwg M)

10 = laf S 1 1 1 21 -2v)\ 05 + 035
2 T 2 ocdpll —ui/u | \col — KoKy 31— 2
1 0 1

11- 2"’36 N CoP 03 — 03
18 1 —vg | 71+ co(l = p/u)3/041 — vi)1 =11 2 ’
5 =1 =1 (16)
6”(0]=i6' ._..EI_ 1 l 1 _zl -'2\"0 0'22+0'33
BT 2 dpll = ui/uy | \col — Ko/ky 31— 2
11 -2vg_ CopP g3 — 0n
- T Okk| t 5 5 s
181 - v 1+ co(l — pd/u)3/(4(1 — vl — 11 2
1 c 1 1+ v
= (0) = 1 0 -, -
= — e ay +h .
Tkl = o Tkk = X T = Kol [2(1 —v) M 0"*]
where
@+ b —— 4 a+2b) = 2[4 b
= (a —_ = - ,
r 21 - v) 21 - %)
Y 1 5 — dv;
co(l — uo/uy)  6(1 — "'3)’
(17)
— 1 —_—
co(l = po/my) '
1 1 1
b=— - - .
3cg \1 — Ko/Ky 1 — po/1ty
The mean stress of the fibers follows simply from
_ 1 _ _
Gl = — (G = cy)- (18)
0

Equation (15) then provides the effective stress a{” for the ductile matrix at a given
stage of deformation; it is implicitly dependent upon ug.

As the constitutive eqn (2) is given in a rate-form, a forward incremental scheme
may be adopted in the calculation. Following the application of &; the composite is
initially (# = 0) elastic, and thus u§ = u,. This value is used in eqn (6) to calculate the
effective elastic moduli of the composite, and by eqn (7) the overall strain. The initial
effective stress o is also calculated from eqn (15), by setting ug = 4o. Then the initial
creep rate of the matrix &5 can be determined from the constitutive eqn (2) (by setting
e = 0). After a time increment, the new effective creep strain of the ductile matrix
becomes:

es(r + dr) = gl(t) + €.(r) - dt, (19)

so that the secant shear modulus changes to:

a® @ 1

- —3 — —
Ho = 360 = 3693, + €5) /g + 36/

for the next time increment. With this new u§, the overall secant moduli Ef;, vi,, ... in
eqn (6) can be determined, and these lead to a new overall strain ;. In the mean time this
new ug and the newly computed Ej, , v5, ... also result in a new effective stress a{” from
eqn (15), and the new creep rate £¢ of the matrix can be calculated with this new g{” and
the updated effective creep strain 5. This process can be repeated to obtain the entire
strain £; vs time curve. The overall creep strain of the composite is given by the difference
of its total strain and elastic strain.

(20)
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5. APPLICATION TO A BORSIC/ALUMINIUM COMPOSITE

The anisotropic nature of creep deformation of a fiber-reinforced metal-matrix
composite as calculated from the developed theory will now be demonstrated for a
Borsic/aluminium system, and the predicted results will be compared to two existing
theories: the mean-field theory developed by Zhu and Weng (1990) for the dilute concen-
tration problem and the local-field theory developed by Wang and Weng (1992). Unlike
the secant-moduli method developed here, these two theories were established based on
the elastic constraint of the ductile matrix, and, therefore, were intended only for small
creep strain range. The assumption of elastic constraint will render the overall creep
response somewhat stiffer as deformation proceeds into deep creep range. Furthermore,
the mean-field approach to a nonlinear problem will also result in a stiffer response as
compared to a local-field approach, except for conditions with dilute concentration under
which the deformation field in the ductile matrix is indeed quite uniform, or for a fiber
composite under an axial loading which would lead to a relatively uniform field.

The transient and steady creep behavior of an 1100 aluminium has been tested by
Ericksen (1973) under pure tension &,, = 82.68 MPa, 65.46 MPa and 41.34 MPa, at
room temperature, and the experimental data are reproduced as open circles in Fig. 4
(creep properties at a high temperature had been sought for by the authors, but Ericksen’s
data were found to be the only ones which provide the creep data for both the ductile
matrix and the composite material). With the constitutive eqn (2), these data can be well
described with the material constants:

a=8x10"2 n=4, b=8, d=77x10"", (21

where stress, strain and time are in the units of MPa, m/m, and h, in turn. The simulated
creep curves with these constants are plotted alongside, reflecting a reasonable accuracy.

Borsic fibers can also creep, but Ericksen’s data and Wang and Weng’s (1992)
calculations both indicate that its contribution to the overall creep of the composite is less
than 1%, and thus will be neglected. The elastic moduli of both phases are (Ericksen,
1973; Allred ef al., 1974):

Borsic fibers: E, = 392.7GPa, v, = 0.15;
(22)

Aluminium matrix: E, = 68.9 GPa, ve = 0.33.

Using these material constants and the theory developed, we then calculated the
development of creep strain. To reflect the creep deformation of a compressor or turbine
blade under a centrifugal force, we first subject the composite to an axial tension
&,; = 100 MPa. To provide a background for comparison, the total creep strain f, of the
composite as calculated by Zhu and Weng’s (1990) mean-field theory and Wang and

&5y, x107>m/m
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Fig. 4. Creep properties of a 1100 aluminium at room temperature.
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Fig. 5. Development of the axial tensile creep strains by (a) the elastic constraint approximation,
with the mean-field and local-field approaches and (b) the secant-moduli approach.

Weng’s (1992) local-field theory are plotted in Fig. 5(a) at three selected fiber concen-
trations: ¢; = 5%, 10% and 20%. The axial creep strains calculated by the present theory
are shown in Fig. 5(b). While the prediction by the mean-field theory is stiffer than the
local theory and the secant-moduli method developed here, the somewhat uniform field
in the ductile matrix under an axial loading has clearly rendered the mean-field approach
a rather accurate one even at the concentration of 20%.

This however is not the case under a transverse loading, say at ,, = 100 MPa. The
deformation of the composite is now matrix-dominated, and the field in the matrix is
rather nonuniform. The overall transverse creep strains &3, are now depicted in Fig. 6(a)
and 6(b), again for the same three selected fiber concentrations. The predictions by
the mean-field theory are now noticeably stiffer than the local one, which, due to its
elastic-constraint assumption, in turn also leads to a stiffer response than the current
secant-moduli approach. The calculation by the local theory involves a rather elaborate
accounting of the local stress and strain fields of the heterogeneously deforming matrix
(Luo and Weng, 1989). When the local information is needed (say for the determination
of matrix cracking or void growth) or when the fiber concentration is high, the local
approach should be called for. But for estimating the overall response at low or moderate
concentration, the present theory is the simpler one.

COE 3:7/8-¢
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Fig. 6. Development of the transverse tensile creep strains by (a) the elastic constraint approxi-
mation, with the mean-field and local-field approaches and (b) the secant-moduli approach.

The creep behavior under plane-strain, biaxial loading with an initial, macroscopic
effective stress G,(0) = 100 MPa are given in Fig. 7(a) and 7(b). The plane-strain con-
dition (&,, = 0) implies that &,, = v{5(G,, + &33), and in this case the biaxial stresses are
Gy = G33 = 100/(1 — 2v},), initially with v, = v;,. As v{, is not constant, the biaxial
stress must also be adjusted to maintain the plane-strain condition as deformation
proceeds. The relative features of these three theories remain similar to those in Fig. 6.
The level of creep strain, however, is two orders of magnitude lower than the transverse
creep, and one order less than the axial creep.

The accuracy of the theory is now partially assessed by a comparison with the
experiment under the transverse tension &,, = 65.46 MPa, at the fiber concentration
¢, = 35%. Both the theoretical prediction and the experimental data for the evolution of
total strain (the sum of elastic and creep strains) are shown in Fig. 8. Also included as a
background curve on the top is the total strain curve of the pure aluminium matrix under
the same stress. The superior creep resistance of the composite is evident (of course it is
even more so under axial tension), and the accuracy of the theory is seen to be quite
satisfactory.

Finally, we note that, among all possible loading directions, transverse tension is
known to be the most critical one in causing the interfacial debonding. The maximum



Fig. 7. Development of the biaxial tensile creep strains by (a) the elastic constraint approximation,
with the mean-field and local-field approaches and (b) the secant-moduli approach.
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Fig. 9. Development of (a) the maximum interfacial tensile stress and (b) the transverse tensile
creep strain of the composite, under a transverse tension with and without a superimposed lateral
compression at ¢, = 5%.

tensile stress in this case occurs at the pole, whose tensile stress evolution under
Gy, = 100 MPa is depicted as the lower curve in Fig. 9(a), at ¢, = 5%. The stress concen-
tration increases from 1.38 initially to 1.44 after 12 h. When such a transverse loading is
superimposed by a lateral compression G33 = —Gy; = —100 MPa, the tensile stress con-
centration is significantly higher, increasing to 1.88 at f = 12 h. The most drastic effect
for such a superimposed compression is in the generated tensile creep strain &5, for the
composite; as shown in Fig. 9(b), it is about 12 times higher at the end of 12 h. Such a
dramatic effect is due to the nonlinear stress exponent n = 4, in the constitutive equation.

To reflect the influence of fiber concentration on the evolution of the maximum
tensile interfacial stress and the overall transverse strain with and without a superimposed
lateral compression, similar results are plotted in Fig. 10(a) and (b), at ¢, = 20%. The
increase of fiber volume fraction has resulted in a lower stress concentration, but as
shown by the top curves of Fig. 10(a) and (b), a superimposed lateral compression has also
led to significant increase in both the stress concentration and the accumulation of the
overall transverse creep strain.
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Fig. 10. Development of (a) the maximum interfacial tensile stress and (b) the transverse tensile
creep strain of the composite, under a transverse tension with and without a superimposed lateral
compression at ¢, = 20%.
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