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ABSTRACT

A micro-mechanical theory based on the mean-field approach is employed to determine
the residual stress due to phase transformation. The stresses of the matrix within transformed
zone are evaluated. The derived hydrostatic residual stress is available for the heterogeneous
solids, especially, at ¢; > 0.3 compared with that evaluated from the continuum theory. The
modification factors of the residual stress for composites with different elastic moduli have
also found. The results show that the volumetric expansion and softer inclusions can provide
more effective toughening. The explicit form of the toughness change is presented for the
composite with spherical particles.

INTRODUCTION

In the development of transformation toughening in ceramics such as partially
stabilized zirconia (PSZ) and zicornia toughened alumina (ZTA), most people concentrated on
the residual strain which induces a compressive traction on the surface of the pre-existing
flaw to restrict the crack propagation [1-3]. Alternatively, the so-called R-curve behavior can
also lead to a maximum in the strength-toughness relation. The measured stress intensity
factor, denoted by Ky, rises with increasing crack length for small cracks. The approach to
predict the strength-toughness relationships for transformation has been proposed in PSZ
materials [4], where the constituents have the same material properties. However, in ZTA
materials, for example, the Al,O3; matrix and tetragonal-ZrO, inclusions possess different
elastic moduli, and the influence of interaction between two phases becomes important. The
intent of the present work is to extend the formulation of the previous model [4], but with
considering the inhomogeneity effect based on the Eshelby-Mori-Tanaka theory [5-6].

STRESS RELIEF

It is assumed that the half-height of the transformation zone H is small compared with
the length of a semi-infinite crack, and the crack propagates along the 1-axis and
perpendicular to the 2-axis. For sub-critically transforming materials under steady-state
growth conditions [7], the mean residual stress o, generated by the dilatant transformation

strain &' in the plane- strain case is given by
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E, v and c; are referred to as the Young Modulus and Poisson ratio of the composite, and the
volume fraction of the inclusions, respectively. However, the strengths of the material
calculated from the residual stresses in Eq. (1) seemly can not have good agreements with the
experimental data in the ductile material and/or the heterogeneous solids [4]. The influence of
inhomogeneity in Eq. (1) is neglect as the variations of the elastic moduli in composite and c;
increase. A general consideration to evaluate the residual stresses in the composite is proposed,
now, as follows.

Following the mean-field approach involving inhomogeneity and transformation
problems [5-6], the E-M-T theory provides the information about the mean perturbed stress of
the matrix in terms of the material properties and the volume concentration. A simple scheme
to evaluate the inner product and orientational average of an isotropic tensor, for example, can
be found in Pan and Weng [8] for the martensitic transformation and thermal expansion
problems. For the spherical inclusions accompanying phase transformation, the hydrostatic
residual stress of the matrix o, , after some derivations [5-6,8] for 3-D random orientation of

the inclusions, is determined, and the result is
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where the subscript character 0 and 1 are referred to as the matrix and the inclusion phase,

respectively. The bulk and shear modulus is denoted by x and g in turns. The volume

fraction of the matrix co is equal to 1-c;. This average perturbed stress of the matrix due to the

volumetric expansion of transforming inclusions is tensile, and has the relation of

0y, =0, = 04. Assume that the main-crack propagates within the matrix, the stress o&,,

(tensile in the matrix) will create a compressive traction on the crack surface in the wake, so
as to toughen the composite. The magnitude of the residual stress &, is
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The values of the residual stress, determined from Eq. (1) and Eq. (3), are identical while the
elastic moduli of both phases in the composite are the same. In other words, the hydrostatic
residual stress, in this special case, derived from two different methods— continuum theory
and eigenstrain approach-- is exactly equal. The results for the latter theory can show the
inhomogeneous effects, whereas the former one does not.

The stress field from the crack in general is
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where K is referred to as the applied stress intensity factor. The distance r is measured from
the crack-tip, and the angle & is the position counterclockwise from the crack plane. The
functions f; (@) are universal and given in many texts on fracture mechanics. Under the

small scale transformation condition, the reduction from K to Ky, is expected due to
transformation, and Ky, governs the fracture process at the tip. The stress intensity factor near
the crack-tip Kip = K + AK, where AK is the toughness change. From the idea of the



comparison material [5-6], the stress of the matrix 0(0’ after the transformation, then, can be

evaluated by 0(0) =0, +0;. Under the Mode | loading and the plane-strain condition, the

hydrostatic stress of the matrix near the vicinity of the crack, after phase transformation, can
be recast by

(0) _ K+AK
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where v is the Poisson ratio of the material within the transformed zone.

——[2(1+V) cos(—)] (5)

TOUGHNESS CHANGE

From dimensional considerations, different from other models [1-3], the steady-state
toughness K, can be expressed by Ky, = Ko + |AK|, and the toughness change AK due to the
residual stress can be expressed by

AK =5, H (6)

The negative sign of AK means the toughening. The parameter # depends on the zone shape
or the transformation criterion. It is easy to determine the S value for different materials

from the experiments by plotting fracture toughness (Ky,) vs transformation zone size (clx/ﬁ )
[9]. It was found that, for example, /£ is 0.68 for Mg-PSZ and 0.33 for Y-TZP (Al,Oz3)
materials separately [4]. It is noted that the form of the toughness increment in Eq. (6) due to
the residual stress is slightly different from Swain and Rose [4] by using &, instead of

30,,/2. In fact, as one knows, the toughness change in the vicinity of the crack is not always

of the negative sign. Zone shape effects on AK are very important. For instant, the profile due
to dilatant transformation ahead of the crack, precisely in the —7z/3<6<x/3 region,
provides deleterious positive AK. Thereby, inclusions in front of the crack rise Ky, whereas
those at the side &> /3 reduce the stress intensity factor.

The explicit form of toughness change for materials with spherical inclusions can be
reduced to be of the simple form in the following.
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The toughness change in Eq. (7) can reveal the influence of inhomogenity and volume
concentration in the composite.

DISCUSSION

It is now of interest to examine the real material systems. Since the lack of the
information about zirconia-toughened concrete, the PSZ and ZTA materials are typically
selected to represent the two-phase composite for Li=L, and L; # L, case, respectively. L; and
Lo are the elastic moduli tensor of the inclusion and the matrix, respectively. The elastic
properties of those materials are shown as follows [7, 10-13]:

PSZ materials: the cubic-ZrO, matrix and t- ZrO, inclusion with the same elastic
moduli.



xk =172.5GPa, u=79.6GPa, gk‘f(“ = 0.056.
ZTA materials: the Al,O3 matrix and t- ZrO, inclusion.
K, = 260GPa, u, =156GPa, &) =0.047.

The toughness for ¢c- ZrO,, t- ZrO, and Al,O3 is 3.7, 6.62 and 4.89 MPa+/m , in turns.

The residual stresses induced by phase transformation are found in Eq. (1) and Eqg. (3).
Those perturbed stresses are equal to each other in PSZ materials. However, the normalized
stresses, &, / o, , depicted in Fig. 1 are different in ZTA materials with change c; because of

the influence of inhomoheneity, where the effective moduli in o, is calculated from the
Rule-of-Mixture. The derived residual stress o&,, is higher than o, if ¢c; > 0.3. This result
interprets that o, is suitable for the low volume fraction of the inclusions in ZTA materials

[4], and the mean residual stress &, might be useful for the middle-high volume

concentration. This conclusion is also shown and depicted in Fig. 2 while the influence of
inhomogeneity has been investigated. The normalized residual stress vs log( «, / 1, ) is plotted

in Fig. 2 with v, =v;, =0.3 and g =79.6GPa. The normalized stresses change as the
ratios of 4, / 1, increase or decrease. It is necessary to multiply this normalized factor for

the results calculated from Swain and Rose’s approach [4] if the elastic moduli of the
constituents are different.

From Eq. (6), the toughness change is proportional to the residual stress and the square
root of the zone size. The volume fraction effect on toughening for all materials is shown in

Fig.3 by using |AK| / BvH s log( g, 1 py) with v, =0.25 and v, =0.3. Obviously, the

larger c; transforms, the more toughened composite occurs. Besides, the results in Fig. 3 also
reveal that the softer inclusions with the harder matrix have more effective transformation
toughening.

The stress of the matrix relieved or strengthened after phase transformation depends on
the zone shape and the position near the crack. The contour of the transformed zone due to
dilatant transformation has the relation of H = rsin(z/3) for € > /3. For Mg-PSZ with
£ =0.68 and H =0.6um [7], the hydrostatic stresses of the matrix calculated from Eq. (5)

and Eq. (7) ahead of the crack at & =0 are plotted in Fig. 4 with c; from 0 to 0.3. The line
with ¢; = 0 means no transformation. In Fig. 4, the volumetric expansion of inclusions will
increase the hydrostatic stress of the matrix. This explains why many microcracks
accompanying with phase transformation take place in front of the crack [9]. The stress of the
matrix at d=x/3 and 6 =x/2 are also displayed in Fig. 5 and Fig. 6, respectively. The
stresses within the transformed region at &>x/3 are relieved due to the phase
transformation, so as to yield the toughening.

The normalized toughness increase is depicted in Fig.7 for PSZ and ZTA materials,
where the original toughness K is equal to coKo+c;K; and H = 1.0 um for ZTA [12]. For PSZ,

the AK/K is 0.384 at ¢,=0.3, and it is within the 0.2~0.6 range [1,7]. This means that the
theoretic predictions of transformation toughening are reliable. The ratio of toughness vs the
volume concentration in Fig. 7 is not of the linear relation, especially, with increasing of c;.

CONCLUDING REMARKS

One analyzed the mean residual stress induced by the phase transformation in the
composite containing the spherical inclusions. This approach allows us to deal with the



inhomogeneity effect of the heterogeneous solids. The perturbed stresses calculated from
Swain and Rose’s method need to multiply the modification factor, which has been
determined here. A simple and reliable method based on the dimensional analysis is proven to
determine the toughness change if the parameter £ is known experimentally. Actually, this

method can also cover all crack-shielding mechanisms due to phase transformation. However,
to work well on fracture toughness, the information of parameter S for specific materials

has to be established first.
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FIG1 The normalized residual stress and FIG. 2 The normalized residual stress and
volume concentration in ZTA materials. the ratio of elastic shear modulus at
v, =v, =0.3.
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FIG. 3 The toughness increment and the FIG. 4 The hydrostatic stress of the matrix
ratio of elastic shear modulus at with the distance r from the
v, =0.25 and v, =0.3. crack-tipat =0.



FIG. 5 The hydrostatic stress of the matrix
with the distance r from the
crack-tipat 8 =x/3.
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FIG.7 The normalized toughness increment
with volume concentration in PSZ and
ZTA materials, where K=coKq+c1Kj.

FIG. 6 The hydrostatic stress of the matrix

with the distance
crack-tipat 8=7x/2.
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