
1 

Residual Stress on Toughening with Spherical 
Inclusions Accompanying Phase Transformation 

 
 

Huang-Hsing Pan1 and Wen-Ten Kuo2 
 

Keywords: residual stress, fracture toughness, inhomogeneity 
 

ABSTRACT 
     A micro-mechanical theory based on the mean-field approach is employed to determine 
the residual stress due to phase transformation. The stresses of the matrix within transformed 
zone are evaluated. The derived hydrostatic residual stress is available for the heterogeneous 
solids, especially, at c1 > 0.3 compared with that evaluated from the continuum theory. The 
modification factors of the residual stress for composites with different elastic moduli have 
also found. The results show that the volumetric expansion and softer inclusions can provide 
more effective toughening. The explicit form of the toughness change is presented for the 
composite with spherical particles.  
 
INTRODUCTION  
 
     In the development of transformation toughening in ceramics such as partially 
stabilized zirconia (PSZ) and zicornia toughened alumina (ZTA), most people concentrated on 
the residual strain which induces a compressive traction on the surface of the pre-existing 
flaw to restrict the crack propagation [1-3]. Alternatively, the so-called R-curve behavior can 
also lead to a maximum in the strength-toughness relation. The measured stress intensity 
factor, denoted by Km, rises with increasing crack length for small cracks. The approach to 
predict the strength-toughness relationships for transformation has been proposed in PSZ 
materials [4], where the constituents have the same material properties. However, in ZTA 
materials, for example, the Al2O3 matrix and tetragonal-ZrO2 inclusions possess different 
elastic moduli, and the influence of interaction between two phases becomes important. The 
intent of the present work is to extend the formulation of the previous model [4], but with 
considering the inhomogeneity effect based on the Eshelby-Mori-Tanaka theory [5-6]. 
 
STRESS RELIEF 
 
     It is assumed that the half-height of the transformation zone H is small compared with 
the length of a semi-infinite crack, and the crack propagates along the 1-axis and 
perpendicular to the 2-axis. For sub-critically transforming materials under steady-state 
growth conditions [7], the mean residual stress m  generated by the dilatant transformation 

strain ph
kk  in the plane- strain case is given by 
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E,   and c1 are referred to as the Young Modulus and Poisson ratio of the composite, and the 
volume fraction of the inclusions, respectively. However, the strengths of the material 
calculated from the residual stresses in Eq. (1) seemly can not have good agreements with the 
experimental data in the ductile material and/or the heterogeneous solids [4]. The influence of 
inhomogeneity in Eq. (1) is neglect as the variations of the elastic moduli in composite and c1 
increase. A general consideration to evaluate the residual stresses in the composite is proposed, 
now, as follows. 
     Following the mean-field approach involving inhomogeneity and transformation 
problems [5-6], the E-M-T theory provides the information about the mean perturbed stress of 
the matrix in terms of the material properties and the volume concentration. A simple scheme 
to evaluate the inner product and orientational average of an isotropic tensor, for example, can 
be found in Pan and Weng [8] for the martensitic transformation and thermal expansion 
problems. For the spherical inclusions accompanying phase transformation, the hydrostatic 
residual stress of the matrix kk~ , after some derivations [5-6,8] for 3-D random orientation of 

the inclusions, is determined, and the result is 
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where the subscript character 0 and 1 are referred to as the matrix and the inclusion phase, 
respectively. The bulk and shear modulus is denoted by   and   in turns. The volume 
fraction of the matrix c0 is equal to 1-c1. This average perturbed stress of the matrix due to the 
volumetric expansion of transforming inclusions is tensile, and has the relation of 

332211
~~~   . Assume that the main-crack propagates within the matrix, the stress 22

~  

(tensile in the matrix) will create a compressive traction on the crack surface in the wake, so 
as to toughen the composite. The magnitude of the residual stress 22

~  is 

     
)(43

4~

1100010

0101
22 




cc

c ph
kk


                                          (3) 

The values of the residual stress, determined from Eq. (1) and Eq. (3), are identical while the 
elastic moduli of both phases in the composite are the same. In other words, the hydrostatic 
residual stress, in this special case, derived from two different methods— continuum theory 
and eigenstrain approach-- is exactly equal. The results for the latter theory can show the 
inhomogeneous effects, whereas the former one does not. 
     The stress field from the crack in general is 
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where K is referred to as the applied stress intensity factor. The distance r is measured from 
the crack-tip, and the angle   is the position counterclockwise from the crack plane. The 
functions )(ijf  are universal and given in many texts on fracture mechanics. Under the 

small scale transformation condition, the reduction from K to Ktip is expected due to 
transformation, and Ktip governs the fracture process at the tip. The stress intensity factor near 
the crack-tip Ktip = K + K, where K is the toughness change. From the idea of the 
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comparison material [5-6], the stress of the matrix )0(
ij after the transformation, then, can be 

evaluated by ijijij  ~)0(  . Under the Mode I loading and the plane-strain condition, the 

hydrostatic stress of the matrix near the vicinity of the crack, after phase transformation, can 
be recast by 
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where   is the Poisson ratio of the material within the transformed zone.  
 
TOUGHNESS CHANGE 
 
     From dimensional considerations, different from other models [1-3], the steady-state 
toughness Km can be expressed by Km = K0 + |K|, and the toughness change K due to the 
residual stress can be expressed by 

     HK kk ~                                                       (6) 

The negative sign of K means the toughening. The parameter   depends on the zone shape 
or the transformation criterion. It is easy to determine the   value for different materials 

from the experiments by plotting fracture toughness (Km) vs transformation zone size (c1 H ) 
[9]. It was found that, for example,   is 0.68 for Mg-PSZ and 0.33 for Y-TZP (Al2O3) 
materials separately [4]. It is noted that the form of the toughness increment in Eq. (6) due to 
the residual stress is slightly different from Swain and Rose [4] by using kk~  instead of 

3 m /2. In fact, as one knows, the toughness change in the vicinity of the crack is not always 

of the negative sign. Zone shape effects on K are very important. For instant, the profile due 
to dilatant transformation ahead of the crack, precisely in the 3/3/    region, 
provides deleterious positive K. Thereby, inclusions in front of the crack rise Ktip, whereas 
those at the side  > /3 reduce the stress intensity factor.  
     The explicit form of toughness change for materials with spherical inclusions can be 
reduced to be of the simple form in the following. 
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The toughness change in Eq. (7) can reveal the influence of inhomogenity and volume 
concentration in the composite. 
 
DISCUSSION 
 
     It is now of interest to examine the real material systems. Since the lack of the 
information about zirconia-toughened concrete, the PSZ and ZTA materials are typically 
selected to represent the two-phase composite for L1=L0 and L1 L0 case, respectively. L1 and 
L0 are the elastic moduli tensor of the inclusion and the matrix, respectively. The elastic 
properties of those materials are shown as follows [7, 10-13]: 
     PSZ materials: the cubic-ZrO2 matrix and t- ZrO2 inclusion with the same elastic 
moduli.  
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                  GPa5.172 , GPa6.79 , ph
kk  = 0.056. 

     ZTA materials: the Al2O3 matrix and t- ZrO2 inclusion.  
                  GPa2600  , GPa1560  , ph

kk  = 0.047. 

The toughness for c- ZrO2, t- ZrO2 and Al2O3 is 3.7, 6.62 and 4.89 MPa m , in turns. 
     The residual stresses induced by phase transformation are found in Eq. (1) and Eq. (3). 
Those perturbed stresses are equal to each other in PSZ materials. However, the normalized 
stresses, m /~

22 , depicted in Fig. 1 are different in ZTA materials with change c1 because of 

the influence of inhomoheneity, where the effective moduli in m  is calculated from the 

Rule-of-Mixture. The derived residual stress 22
~  is higher than m  if c1 > 0.3. This result 

interprets that m  is suitable for the low volume fraction of the inclusions in ZTA materials 

[4], and the mean residual stress 22
~  might be useful for the middle-high volume 

concentration. This conclusion is also shown and depicted in Fig. 2 while the influence of 
inhomogeneity has been investigated. The normalized residual stress vs log( 01 /  ) is plotted 

in Fig. 2 with 3.010   and GPa6.791  . The normalized stresses change as the 

ratios of 01 /   increase or decrease. It is necessary to multiply this normalized factor for 

the results calculated from Swain and Rose’s approach [4] if the elastic moduli of the 
constituents are different.  
     From Eq. (6), the toughness change is proportional to the residual stress and the square 
root of the zone size. The volume fraction effect on toughening for all materials is shown in 

Fig.3 by using |K| / H  vs log( 01 /  ) with 25.00   and 3.01  . Obviously, the 

larger c1 transforms, the more toughened composite occurs. Besides, the results in Fig. 3 also 
reveal that the softer inclusions with the harder matrix have more effective transformation 
toughening.  
     The stress of the matrix relieved or strengthened after phase transformation depends on 
the zone shape and the position near the crack. The contour of the transformed zone due to 
dilatant transformation has the relation of H = r )3/sin(  for    /3. For Mg-PSZ with 

68.0  and mH 6.0  [7], the hydrostatic stresses of the matrix calculated from Eq. (5) 
and Eq. (7) ahead of the crack at 0  are plotted in Fig. 4 with c1 from 0 to 0.3. The line 
with c1 = 0 means no transformation. In Fig. 4, the volumetric expansion of inclusions will 
increase the hydrostatic stress of the matrix. This explains why many microcracks 
accompanying with phase transformation take place in front of the crack [9]. The stress of the 
matrix at 3/   and 2/   are also displayed in Fig. 5 and Fig. 6, respectively. The 
stresses within the transformed region at 3/   are relieved due to the phase 
transformation, so as to yield the toughening.  
     The normalized toughness increase is depicted in Fig.7 for PSZ and ZTA materials, 
where the original toughness K is equal to c0K0+c1K1 and H = 1.0 m  for ZTA [12]. For PSZ, 

the K/K is 0.384 at c1=0.3, and it is within the 0.2~0.6 range [1,7]. This means that the 
theoretic predictions of transformation toughening are reliable. The ratio of toughness vs the 
volume concentration in Fig. 7 is not of the linear relation, especially, with increasing of c1. 
 
CONCLUDING REMARKS 
 
     One analyzed the mean residual stress induced by the phase transformation in the 
composite containing the spherical inclusions. This approach allows us to deal with the 
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inhomogeneity effect of the heterogeneous solids. The perturbed stresses calculated from 
Swain and Rose’s method need to multiply the modification factor, which has been 
determined here. A simple and reliable method based on the dimensional analysis is proven to 
determine the toughness change if the parameter   is known experimentally. Actually, this 
method can also cover all crack-shielding mechanisms due to phase transformation. However, 
to work well on fracture toughness, the information of parameter   for specific materials 
has to be established first.  
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FIG.1 The normalized residual stress and 

volume concentration in ZTA materials. 

 

 

 

 

 

 
 

FIG. 3 The toughness increment and the 

ratio of elastic shear modulus at 

25.00   and 3.01  . 

 

 

 

 
 

FIG. 2 The normalized residual stress and 

the ratio of elastic shear modulus at 

3.010  . 

 

 

 

 

 
 

FIG. 4 The hydrostatic stress of the matrix 

with the distance r from the 

crack-tip at 0 . 

 

c1

m
~ 22 m

~ 22

0

1




log

c1=40%
c1=30%
c1=20%
c1=10%

c1=40% 




c1=30% 

c1=20% 

c1=10% 

0

1




log

c1=30% 
c1=20% 
c1=10% 
c1= 0% 

  GPakk
0

)m(r 



7 

 

 

 

 

 

FIG. 5 The hydrostatic stress of the matrix 

with the distance r from the 

crack-tip at 3/  . 

 

 

 

 

 
FIG.7 The normalized toughness increment 

with volume concentration in PSZ and 

ZTA materials, where K=c0K0+c1K1. 

 

 

 

 
 

FIG. 6 The hydrostatic stress of the matrix 

with the distance r from the 

crack-tip at 2/  . 
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球形介質相變引起殘留應力之韌性強化 
 

潘煌　 1、郭文田 2 
 

關鍵詞：殘留應力、破壞韌性、非均質 

 

摘要 
  提出一種根據均值法之微觀力學理論來推導相變所產生之殘留應力，並求出相變區

之材料母體的應力。當介質材料體積比超過 30%時，和連體理論所淂之殘留應力比較，

本文所推導的殘留應力更適合用在非均質固體材料上。複合材料之母體與介質有不同彈

性模數時，由連體理論計算之殘留應力必須作修正，而該修正係數也已經計算求得。經

由殘留應力引起強化韌性之結果顯示，體積膨脹之相變和比母體彈性模數弱之介質材料

能夠更有效強化材料韌性。具有球形介質相變之韌性變化公式也已用明確式表示。 
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