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Abstract

The crack-tip toughness of composite materials with rigid particles is evaluated
theoretically because of the change of the effective elastic moduli. The fracture
toughness in the vicinity of the main crack reduces as rigid spherical inclusions are
employed within the isotropic matrix. The composites become more brittle. The
results show that the ratio of the elastic moduli increment is greater than that of the
toughness reduction. The most effective ‘toughness enhancement in the rigid-
reinforced composites is found if the Poisson ratio of the matrix approximately
reaches 0.34 at ¢,=0.3. The explicit forms of the toughness change and the effective

elastic moduli of the rigid-reinforced composites are also derived and shown here.
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1. Introduction

It is very important to strengthen the materials in engineering. The elastic moduli
of the composite will increase when the material composes ot the harder inclusions
and the softer matrix. However, this leads to the reduction of the material toughness.
To find the relation between the strength and the toughness of the composites is
interested to the material designers. As one knows, the effective elastic moduli of the
composite depend on the material properties of the constituents, the shapes and the
volume fraction of the inclusion [1-2], and the material toughness, too [3]. Here, one
mainly concentrates on the toughness change due to the moduli enhancement of a
rigid-reinforced composite. The rigid-reinforced composite consists of the isotropic
matrix and the rigid inclusions, where the inclusions are uniformly dispersed within
the matrix. The bulk and shear moduli of rigid inclusions go to infinity as compared
with those of the matrix in the text. Throughout this work the matrix will be referred
to as phase 0, and the inclusion as phase 1, with the volume fractions ¢, and c,,

respectively. For simplification, only the spherical inclusions are taken into account.

2. Effective Elastic Moduli of the Rigid-Reinforced Composite
The rigid-reinforced composite is isotropic when the inclusions are of 3-
dimentional random orientations. Only two independent elastic constants, for instance,
or the bulk modulus k and the shear modulus u exist in this composite. There are
many theoretical approaches [4-6] to determine the effective moduli of the rigid-
reinforced composite as kK, — e and U, — . One uses the Eshelby-Mori-Tanaka
method [7-8] to evaluate those effective elastic moduli. Detailed exposition of this
method, for example, can be found in Weng [9]. The explicit forms of effective
moduli of the rigid-reinforced composite, then, can be determined from the results in
Pan and Weng [10]. After some simple but lengthy calculations, the results containing
rigid spherical inclusions are shown as follows.
1. Effective Bulk Modulus: x
L 3k, +4u,c, (1)
Ky 3K(I-¢) .
where the bulk and shear modulus are denoted as k,and pu, respectively.
2. Effective Shear Modulus: u
M 6K, + 20, § + (0K, +84,)c
Hq 6(Ko +2u )1 ¢))
3. Effective Poisson’s Ratio: v
V= 3(Kg + 20 )(3Ko —210) + Ko B3K, +164,)c,
6(K o + 21 )3K + Ho) + to (33K, +561,)c,
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Obviously, the above results own the relations of K =K,, H=p, and
v =v, =(3K, - 2H,)/(6K, +21,) when no inclusions happen within the matnix or
¢, — 0, where v, is the Poisson ratio of the matnx. This coincides with the real
material system. Meanwhile, the effective elastic moduli of the rigid-reinforced
composite depend on the material properties of the matrix and the volume

concentration of the inclusions.

3. Toughness Change

From Egs.(1) and (2), one finds that the rigid-reinforced composite always reveal
the behavior of k >=x,and u > ,. Then, the increase of effective elastic moduli
results in the toughness loss of the composite by instinct. The material toughness can
be measured by the stress intensity factor. Let K, represent the stress intensity factor
of the intact matrix, and K, do the stress intensity factor near the main crack-tip

inside the composite. For a plane-strain condition and under the Mode [ loading, the

overall inhomogeneity toughness change of the isotropic medium is of the form [3].

% = /e 4)
where
f:24pk,(1-2v0)(1+v0)+12(1——v0) )
p(1=2v ) (1+vy)+12(1-v,)
(1-vR2(p - @)1 +vy) =31+ p)] )

# T Tl -4p- 3=V + 2Ap-q)]
and the contour factor &, is 1/24 and 0.0072 under the stationary crack and the steadily
growing crack condition, respectively. The parameter fis equal to one while the main
crack is stationary. The material constant p and g have been found in the general case
and shown in [10]. By substituting the Eshelby S-tensor [11] with the spherical shape

of the inclusions into p and g, the final results are in the following.

3¢, (1=vy)
= - 7
P 1+v, +2¢,(1=2v,) @

8—10v, +¢,(7-5v,)
Since the material constant p and ¢ are found, the closed solution of the toughness
change of the rigid-reinforced composite, by substituting Eq. (7) and Eq. (8) into Eq.
(5) and Eq. (6), is determined with

_ Hl+v, +2¢,1-2v )1 -3k (1+v )]}

/ 41+vy)+c(1=-2vy)(T -v,)

9
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(8~10vy)[-8+10v, —=2¢,(10-23v, +15v])]— ¢/ (1 =2v 91 =170v, + 75vY)

£= 4(4—5v )[4+ 5v, —5¢,(1-2v))(1 - ¢}
(10)
The explicit forms in Egs. (4), (9) and (10) show that the toughness change of the
composite containing rigid spherical inclusions only depends on the Poisson ratio of
the matrix and the volume fraction of the inclusions. Noted that the rigid-reinforced
composite always have the behavior of K, /K, = 1. This leads to the composite more
brittle.

4. Numerical Results

The effective toughness (measured toughness), K, = K,— AK , of the composite is
less than K, because of the existence of the rigid inclusions with the toughness change
AK . In other words, the crack-tip toughness K|, = K;+AK . The composite material
become more brittle if K,,> K, [12].

The propagation condition of a main crack will affect the material toughness
depending on , shown in Eq, (9). The normalized toughness vs the volume fraction ¢,
is plotted in Fig. (1). It seems that the rigid-reinforced composite under the steadily
growing crack condition is more toughened than under the stationary crack one. This
behavior actually has been observed in mény real material systems [13].

Due to the fact that the toughness behavior of the stationary crack and the steady-
state propagating crack is similar to each other, one may only discuss the material
properties for a steadily growing crack in the following. The relations between the
toughness and the effective moduli with v,= 0.1, 0.3 and 0.5 are depicted in Fig. (2)-
(4). All conclude the result that the ratio of the normalized moduli is greater than that
of the normalized toughness. For instance in Fig. (2), k/x, =2.2 and u/u, =1.7
at ¢,=0.3, but X,,/K;=1.4 only. In the other hand, the loss ratio of the toughness is less
than the strengthening ratio in the rigid-reinforced composite. The effective bulk
modulus decreases as Vv, increases from 0 to 0.5, and this is totally reversed for the
shear modulus shown in Fig. (2)-(4).

To the end, one examines the toughness change due to the effect of the matrix’s
Poisson ratio. The normalized toughness vs the Poisson ratio of the matrix at ¢,=0.3 is
depicted in Fig. (5). The rigid-reinforced composite is more brittle if the Poisson ratio
of the matrix approaches to 0 or 0.5. The minimum toughness reduction of the
composite occurs at v, = 0.34. This result implies that we can obtain the optimum

material properties by choosing the appropriate Poisson ratio of the matrix.
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5. Conclusions

The overall quantity of the material properties in the naid-reinforced composite
is investigated. The toughness and the elastic moduii of the composite are all shown in
the explicit forms. The toughness of the composite is more than a half of that of the
matrix if the volume fraction of the inclusions ¢, = 0.5 shown in Fig. (2)-(4). However,
the strengthening of the effective elastic moduli is more than twice of the elastic
modulu of the matrix. As the volume fraction of the rigid inclusions increases after
¢,=0.4, the influence of the toughness and the cffective moduli of the composite
become large. The Poisson ratio of the matrix dominates the toughness change of the

reinforced composite if the volume concentration of the inclusions is constant.
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Fig. 1 The normalized toughness vs the volume fraction of the
inclusions at v, =0.3.
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Fig. 2 The relation of the elastic moduli and the toughness at v, =0.1.
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Fig. 3 The relation of the elastic moduli and the toughness at v, =0.3.
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Fig. 4 The relation of the elastic moduli and the toughness at v, =0.5.

KKy
1.6

131

1.0 1 | ! ! . I ! ] ]
0 0.1 0.2 0.3 0.4 05

Fig. 5 The normalized toughness vs the Poisson ratio of the

matrix at ¢, = 0.3.
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