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Abstract

A micromechanical theory is presented to simulate the
stress-strain relation of cement-matrix composites. Based
on the secant modulus of the matrix, the moduli of the
composite material are found. The stress-strain relation of
the composites depends on the material properties of the
constituents, the volume fraction and the shape of the
inclusions. As the stress-strain behavior of the matrix is
known, the theoretical stress-strain curve of the composite
will be determined. The elastic moduli of the concrete
with the disk-like aggregates are stiffer than those with
the spherical one if the aggregate is harder. When the
volume concentration of the aggregates increases, the
strain of concrete reduces because of the harder
aggregates. The results also show the explicit form of the
secant moduli of concrete. The derived formula is suitable
for concrete with the three-dimensional randomly oriented
aggregates.

1. Introduction

For the full stress-strain curve of concrete between the
origin and at failure, the behavior actually is non-linear, or
the so-called elastic-plastic. From the ACI Code, the
elastic moduli of concrete rely on its unit weight and the
fracture strength 7_. Meanwhile, the stress-strain curve
of concrete can find the elastic moduli of the materials.
The elastic Young modulus of concrete is the slope
between the stress at the strain 0.00005 and the stress
equalingto 0.47 .

There are many models to predict the stress-strain
relationship of concrete [1-7]. Most of ‘them are all in
terms of the fracture strength of the concrete. However,
the stress-strain curves may vary at the same concrete
strength. It seems that the strength J of concrete is not
a prime factor to control the moduli. To neglect the
strength factor different from previous models, the
effective elastic moduli of the composites are found in
many literatures [8-11] with elastic moduli of the matrix
and the inclusion. The concept of elastic constraint was
also' present to estimate the overall elastoplastic stress-
strain relations of dual-phase metals [12]. An energy
approach with the secant moduli method, a more accurate
method, was also proposal to determinate the plastic and
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viscoplastic behavior of the composite materials [13-14].
A micromechanics concept with the secant moduli, now,
is chosen to calculate the stress-strain of concrete for the
first time.

The aim of this project is to determine the stress-strain
relation of the concrete theoretically. Concrete as a two-
phase composite consists of the cement matrix and the
aggregate (inclusion). The moduli of the aggregate are
assumed to be constant and those of the cement are
elastic-plastic under the loadings. Because of the elastic-
plastic behavior of the cement, the stress-strain curve of
concrete becomes non-linear depending on the volume
fraction of the aggregate.

2. Micromechanics Theory

We shall use the Mori-Tanaka [15] method to
determine the effective moduli of the two-phase
composites. Detailed exposition of this method based on
Eshelby’s [16] equivalent transformation strain (or
eigenstrain) £ can be found in [17]. In the two-phase
system the inclusions will be referred to as phase 1, and
the matrix as phase 0. The volume fraction of the r-th
phase will be denoted by ¢, . Then the elastic moduli of
the r-th phase will be written as L,, with the bulk and
shear components L, = (3k,,24,).

With the three-dimensional randomly oriented
ellipsoidal inclusions the composite as a whole is
isotropic, characterized by its effective bulk and shear
moduli, or k and g respectively. Following the
eigenstrain approach, one obtains the effective bulk and
shear moduli are found to be

k=Ko /[l+¢,(py/ py)], O
K=o /l1+¢,(q,/9,)], @)
where the material constants p,, p,, ¢, and g, are
py=1+¢[b +2(b, +by +b, +b,)]/3,
Py =(ay +a, +ay; +ay +ay +ay
B, F 0, Hap)l3,
q, =1+¢ [2(b — b, =by)+7b, —5bs +6b,]/15,
9, =[B3(by, + b3 +b5y) +2(a;, +ay, +ay,)
=(aj, +a;; +a, +a, +a, +ay,)]/15.



The constants d,, 0, and 0, depend on the mf)dul.i of
the constituents and Eshelby’s S tensor for an ellipsoidal
inclusion; their values are listed in Appendix.

The explicit form, for example, of the effective bulk
and shear moduli with the spherical inclusions can be
found from Eq. (1) and Eq. (2) to be
Kk = [k, +4py) —4de pty (kg = K,)]

13k, + 44, +3¢,(k, — k)] (3)
H= (5 Brg +4py) +co(py - 1)
(9o +810)]/[5 116 (Brcq +4120)

=6co (1 — 1y (Ko +24,)] 4)

where ¢, = 1- C, is the volume fraction of the matrix.

Now, the secant Young modulus, referred as £, (€), of
the matrix shown in Fig.1 is non-linear, and it relies on
the applied stress or applied strain, but the Poisson ratio
of the matrix remains constant. Fig. 2 is the modulus of
the inclusion £, and its value is constant. The relations of
the material constants are

E =9xu /(3 + p) (5)
v =(3x-2u)(6x +24) (6)

where Vv is denoted as the Poisson ratio of the material.

To estimate the effective Young modulus £(€) of
the composite, we replace £, (&) instead of £, in Eq. (1)
and Eq. (2), where E; is the elastic Young modulus of the
matrix.
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Fig. 1 Schematic representation of the secant Young
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Fig. 2 Schematic representation of the elastic Young
modulus of the inclusions.

3. Numerical Results

To simulate the stress-strain curve of concrete, we
choose the cement to be the matrix, and its secant Young
modulus is assumed to be [18]

E,(¢)=(2-e%'a)E, . )
The strain € in Eq. (7) is the strain at any stress state
before failure and &, the strain at fracture Ji
respectively. The parameter a is chosen as

a=-0.00135 EO2 +0.08652 £ - 0.23359
This parameter can be found if the initial elastic Young
modulus of the cement £, is known.

The material properties of the constituents before
loading are [18-19]
aggregate: E, =40GPa and v, = 0.1

cement:  Ej =2726GPa and v, =0.22
Assuming that the Poisson ratio of the cement and
aggregate remains constant during the loading. When a
uniaxial compressive load applies to concrete, the strain
&, exists. The effective strain of concrete & calculated
from the mean-field approach is [17]

E=¢g,+cE . ()
The eigenstrain £ is in terms of the applied strain &,
and the material properties we neglect its results here.

The procedures to simulate the stress-strain curve of
concrete begin at infinitesimal £. This strain allows us to
calculate the secant modulus in Eq. (7), so as to find the
effective secant modulus of concrete in Eq. (1) and Eq.
(2). Meanwhile the effective strain of concrete is
determined from Eq. (8). Then the stress-strain curve of
concrete is found by

o(e)=E(e)-£. )

The stress-strain relations of concrete with the spherical
aggregates and with the disk-like ones are depicted in Fig.
3 and Fig. 4, where the volume fraction of aggregates ¢,
is 0.0, 0.2, 0.4 and 0.6, respectively. In Fig. 3, the
effective secant Young modulus £, (&) is stiffer than that
of the cement because the harder aggregate used here.
When the volume concentration of aggregates increases,
the effective strain of concrete reduces but the moduli
become stronger. Concrete with the disk aggregates has
the same results in Fig. 4. By comparing Fig.3 and Fig. 4,
we find that the moduli of concrete with the disk
aggregate are stiffer than those with the spherical ones.
Therefore, the shape and the volume fraction of the
aggregate affect the stress-strain relation of the concrete.

4. Conclusions

According to the micromechanics approach, the stress-
strain relationship of concrete is determined. The secant
moduli of concrete depend on the shape of the aggregate,
the material properties and the volume fraction of the
constituents, not the fracture strength 7, and the unit
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Appendix A: Material Constants

Without any summation over any repeated indices
and with i, j, k always following the 1, 2, 3 even
permutation, the constants are

P =1+¢l(a, +a, +a,;XSy,, + Sy +S -1
+(@y +ay +a; XSy + Sppy + Sy — 1)
+ (@ +ay +ay)(Syp + Sy + Sy — 1]/ 3,

Py =(a, +ay, +a,; +ay +a, +a, +ay, +ay,
+ay)/3,

b =a,(S,, —D+ay S,y +a58,,3,
b, =[(a,; +@3)( Sy, —1) +(ay, +a5)S)15
+(ay +a,)8,,,1/2,

by =[a,, (S, +853) + 8y (Syy + Sy =1)
+ a3 (Sy3p3 + Sy = 1)]/2,

by =[(ay; +a,)(Syy; — 1)+ (3ay, +ay)S5
+(3ay; +a,)Sy, +(3ay, +ay,)S,;
+(3ay +ay )(Syy —1)+(3ay, +a;,)S,,
+2b,,(28,3,, - 1)1/8,
bs =[(3as, +a5;)(S335; = 1)+ (3ay, + @33 )8 532
+(3ay, +a3)8y,, +(Bay +a5) Sy,
+(3ay + a5y )(Syy 1) +(Bayy +a,)S,y,

—2b,, (28,5, ~1)]/8,

i bg =[b,(2S), =)+ 6,285, - 1]/ 2,

by =(1-4 i) 1L+ 28,0, (uy 1 o = 1)),
by =(1-p, [ )11+ 28,303 (1 1y - 1]
by == 1 ) 1+ 285 (14 / g = 1)),

a; =[3(K1 —Ko)(.ul _/‘o)z(swsukk _SyktSuj,‘)

= (1 = o XK 1y = Ko 44y )(S,g/ + Sk _Syu —Su,,)
+3py (K, — Ko )1, "/‘o)(Sm, +Suu)
+ 30 o (4 = po) + po (K o =Ko 14,))/ A,

a:j = [3(Kl _KO)(/‘I] _#O)Z(SukkSl(L:U _Slll[L /(A‘kl()
= — g X iy =Koy NS +Skk// —S,.,” = Sen)
=3, (k) = Ko )4, _luo)Sn,] + o (K g — Ko 11)))/ A,

A= (1) = o) 14y =Ko )[S3333 (S + S

_Snzz _522II)+S3322(S1I33 +S:2n _SIIII ‘82233)
+S:3||(Snzz +Szzss _Sns; "Szzzz)

+ 8011 (Sii3s = Siaa) + S Sy = Siyzs)

+ 8033 (S = Sin)l+3(k, —x,) -

(1 = #) [S3333 (S 112282211 = S1111S0m)
85100 (818 =8 arFuin )+ Sisiy
(Sh1338 19 = S8 )] + 31, (x, — K-

(4 = # XSS i1 +S1i33S31 + SussSamm

~ S = S S = SasssS i)

= Mo (K, g =10 14 XSy + Syizp +Spyzs + Sy
+ 8y + Sy + Sy + S35y + Sap3) = 3Ky -

(= 1 XSy + Sy + S35 —1)=3Kop04,,

Appendix B: Eshelby’s O, Tensor

Eshelby’s tensor is in terms of the Poisson ratio of
the matrix v, and the shape of the inclusion. It has a
property of 5, =0 ;; =0 . The three radii of an
ellipsoid are a,, a, and as, wherea, >a, >a,.
The properties of an ellipsoid within the matrix can be
described by twelve independent components of the
Eshelby tensor, which are

Sy =B@ ) + (1= 2v,) ], 1/[87(1~v,)]
S =[ail, —(1-2vy) 1)/ (1-v,))]
Sus =[a31; ~(1-2v)1,1/[87(1 - v,)]
Sz =@ + @)Ly + (-2, +1,)]/[167(1-v,)]

and all other non-zero components are obtained by the
cyclic permutation of (1, 2, 3). The SW tensor which
can not be calculated from above are zero. The /, and

1, components are
I, = (4ma,a,a,)[F(0,k) - E(8,k)]

@ -al)at -ab)'"™,
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I, = (4ma,a,a,)|a, (cz,2 — af)”2 /(a,ay) — E(6,k)]
/(a3 —a3 Xa; —a3)'"?,

IL=4r-1;=1; ,

I, =[4nai(a} —al)+al(a; +2ai —3al)l,
+aj(a; —a;)1;]1/[3a] (af - a;)(a; —a)],

I1,, =4r{[alal —a;(2a] +2a; —3a;)]

+al(al +2a} —=3al)l, +al(al +2a} —3ai)l,}
/[3a; (a} —a;Xa; —a3)], -

I; = [47ra22 (c132 - a,z) - af (a,2 — az2 M,

+al(a; +2a} —3al)l,1/[3a2(al —al)ai —a3)]
1, =(4r -21, —]3)/(a,2 -—azz),

1, =1, —1,)/([1,2 _032),
I, =, +21, —4x)/(a? —al)

and the elliptic integrals of the first and the second kind
are

F@,k)= [[1/(1~Ksin® w)"*]-aw,

E@.k)= [ A~ k?sin® w)" - dw

where
S | 2 2\1/2
@ =sin" (l=agla’) "

k =[(a} —a3)a} —a3)]".
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