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Abstract

This research is to examine the elastic Young modulus of
concrete predicted in ACI Code. By measuring each
compositions of concrete, the experimental material
properties of concrete at the age of 14, 28 and 56 days are
found. The results show that the theoretical M-T moduli
are close to the experimental results, but not those
predicted from ACI Code. The moduli of concrete
calculated from ACI Code and compared to the
experimental data are only good for the aggregates at least
reaching 70% volume fraction of fine and coarse
aggregates. The elastic modulus of concrete estimated
from the fracture stress is not a proper way, and will
overestimate when the volume concentration of
aggregates is low. The proposed theory seemly is suitable
for evaluating the elastic loduli of concrete.

1. Introduction

Concrete indeed is a composite material consisting of
cement paste (or binders), fine and coarse aggregates.
Many factors such as the mix proportion and the material
properties of the constituents dominate the strength and
the elastic moduli of concrete. The upper bound and lower
bound of the effective elastic moduli can be found,
depending on the volume fraction and the elastic moduli
of the compositions, under a prescribed displacement and
prescribed traction respectively [1]. This means that the
material properties of the compositions theoretically
control the elastic moduli of the composite. Meanwhile,
many theoretical models and experimental results [2-7]
also show the elastic moduli of concrete rely on the
material properties of cement paste and the aggregates.
Nevertheless, the estimation of elastic Young modulus in
concrete commonly used is according to ACI Code as

E.= 4730\/f7C' (N/mm?) (1)

where Ec=elastic Young modulus of concrete and fc':
fracture stress at the 28" day. It seems that ACI Code
mainly considers the fracture stress as a dominated factor
to calculate the elastic Young modulus of concrete.
Obviously, these are different views between in practices
and in engineering uses

The aim of this paper is to analyze the elastic moduli of

concrete obtained from the theoretical models, the
experiments and ACI Code, and try to find which one is
reliably predicted method. The presented theory here is
based on the mean-field approach [8-10], and takes
concrete as a two-phase composite with the mortar
(matrix) and the coarse aggregate (inclusion). The coarse
aggregate is assumed to be perfectly bonded in the mortar,
and has the same shape but with different sizes. To cover
all possible shapes of the aggregate from fiber, sphere and
disc, the inclusion shape is taken as an ellipsoid. In the
two-phase system the inclusions (coarse aggregates) will
be referred to as phase 1, and the matrix (mortar) as phase
0. The volume fraction of the r-th phase will be denoted
by C,. Then the elastic moduli of the r-th phase will be
written as L, , with the bulk and shear components
L, = (3x,.21,).

2. Experiments

We used Type | Portland cement, Ottawa standard sand
satisfying ASTM C778 and the coarse aggregate from
Lau-Lung River near Kaohsiung and Pingtung area to
make concrete. The material properties of sand and coarse
aggregate are shown in Table 1.

Table 1. Physical properties of fine and coarse aggregates.

Materials Fine aggregate Coarse aggregate
Specific gravity 2.65 2.61
Water contents (%) 0.11 0.90

SSD (%) 0.24 1.12
Particle size (mm) 0.3 4.75~9.5

In order to simplify the material parameters, the matrix
consists of cement paste with w/c=0.44 (water/cement)
and sands with 20% fixed volume fraction of concrete.
Concrete was produced by changing the volume fraction
of the inclusion (coarse aggregates) with C, =0, 0.1, 0.3
and 0.5, where C, = volume concentration of coarse
aggregates. The mix design of concrete is also displayed
in Table 2.

Table 2. Mix design of concrete (kg/m®).

C, Water | Cement Sand Coarse aggregate
0 558 1269 635 0

0.1 488 1110 635 312

0.3 349 792 635 938

0.5 209 475 635 1560




The manufacture and the curing of concrete samples
follow the procedures of CNS 1230 and CNS 1231 with
specimen size 5 ¢ x10cm and 10 ¢ x20cm. The MTS
machine was used to supply a compressive load during
the testing. Before the test began, the samples had been
preloaded 0.5kN~1.0kN to avoid the unnecessary
electronic signals because of the sensitivity of the
extensometer. We applied a uniaxial compressive stress to
samples by following CNS 1232 with a constant strain
0.002mm/sec when the ages of concrete reach the 14",
28" and 56" day respectively, and tried to determine the
fracture strength, the Poisson ratio v and the elastic
Young modulus E of concrete, where the elastic Young
modulus calculated from ASTM C49. In the meantime,
we took the cores of the coarse aggregate with 5 ¢ x10cm
specimen to find its elastic moduli.

After measuring the elastic Young modulus and the
Poisson ratio of concrete, we use the relation of elastic
moduli to calculate its bulk and shear modulus as follows.
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where x and g are the bulk and the shear modulus of
concrete individually. The experimental results of the bulk
and shear moduli for mortar and the coarse aggregate are
shown in Table 3.

Table 3. Elastic moduli of mortar and coarse aggregates.

The ages AR 11, © i, O 1,0
14" day 9.08 7.59 19.44 14.58
28" day 10.29 8.37 19.44 14.58
56" day 11.30 9.20 19.44 14.58

* the unit is GPa.

3. The M-T Moduli

Many predictions of the elastic moduli, based on the
empirical formula and micromechanics models, have been
proposed. In presence, we shall use the Mori-Tanaka [8]
method to determine the effective moduli of the
two-phase composites, or the so-called M-T moduli.
Detailed exposition of this method based on Eshelby’s [9]
equivalent transformation strain (or eigenstrain) & can
be found in Weng [10].

With the three-dimensional randomly oriented
ellipsoidal inclusions the composite as a whole is
isotropic, characterized by its effective bulk and shear
moduli, or x and s respectively. Following the
eigenstrain approach [6], one obtains the explicit forms of
the effective bulk and shear moduli to be

k=K, I[1+c,(p,/ p)], 4)
1=y l[1+c(a,/9,)], (®)

where the material constants p,, p,, g, and ¢, are
p, =1+¢,[b, +2(b, + b, +b, +b.)]/3,
Pp = (ay +ay, +ay; +ay +a, +ay,
+ay +ag, +agy,)/3,
q, =1+c,[2(b, —b, —b,) + 7b, —5b; +6b,]/15,
q, =[3(b, +by; +by3) +2(a, +a,, +ay)
—(a, +a,;+a, +ay,+ay, +a;,)]/15. (6)

The constants a;, b; and b; depend on the moduli

of the constituents and Eshelby’s S tensor for an
ellipsoidal inclusion; their values are listed in Appendices.

The explicit form of the effective bulk and shear
moduli with the spherical inclusions, a special case, can
be found from Eq. (4) and Eg. (5) to be

Kk =[rco Bk, +4py) — 4C 1y (kg — K1)]
113k, + 4y + 3¢, (kg — K1) ()

p= o [5p, (Brcy +4110) +Co(1tg — 141) -

9%y +8140)1/[5 (3icy + 4 14)

=6, (1o — 1) (1o + 2140)] 8)
where C, =1-c, is the volume fraction of the matrix.
Egs. (7)-(8) will be taken as the theoretical results of
concrete.

4. Results and Discussion

The fracture stress of concrete with different volume
concentration of coarse aggregate at aged 14, 28 and 56
days are shown in Fig.1, and the strength decreases as the
coarse aggregate increases.
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Fig. 1 Fracture stress of concrete.

The elastic Young moduli of concrete increase with
increasing different volume fraction and the ages are
depicted in Fig. 2, where the dotted lines are the
experimental data and the solid lines are M-T moduli
calculated from Egs. (2)-(3) and Eqgs. (7)-(8). In Fig.3, the
increasing ratios of Young modulus E/E, gradually
decrease as the ages are old, but gain linearly as the
volume fraction of aggregates rises, where Ey,=Young



modulus of mortar.
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Fig. 2 Elastic Young modulus of concrete.
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Fig. 3 Increasing ratio of Young modulus.

Fig. 4 is the comparisons between the experiments and
the M-T moduli of the shear modulus of concrete. The
variations between them become large when C;
increases, especially at C, =50%. The ratios of the shear
modulus also decrease when the ages are old, like Fig. 3,
shown in Fig.5.
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Fig. 4 Elastic shear modulus of concrete.
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Fig. 5 Increasing ratio of shear modulus.

To the end, we compare the Young modulus calculated
from ACI 318-89 or Eqg. (1) to M-T moduli and the
experiments. Fig. 6, 7 and 8 are the Young modulus at
aged 14, 28 and 56 days respectively. The upper bounds
and lower bounds of Young modulus are determined
under a prescribed displacement and prescribed traction
respectively as follows.

E =c,E, +C,E; 9)
C,E, +¢.E,

Apparently, the Young modulus calculated from ACI
Code is overestimated when C, is less than 30%
depicted in Figs. 6-8. However, the estimations from the
M-T approach are close to the experiments. This means
that the Young modulus determined from M-T method is
better than that from ACI Code.

5. Conclusions

After we compare the elastic moduli of concrete
obtained from the experiments, the micromechanics
approach and ACI Code, and find the following results.

(1) The M-T moduli of concrete with the spherical
inclusions are always lower than those ones in
experiments.

(2) The elastic Young and shear moduli of concrete
calculated from M-T approach are the pretty reliable
estimations by comparing to the experimental results,
especially at increasing the volume concentration of
aggregates and the longer ages of concrete.

(3) When the volume fraction of coarse aggregates
reaches C, =50%, the M-T shear modulus of concrete
vary from the experiments.

(4) The elastic Young modulus of concrete determined
from ACI Code is obviously overestimated, and will close
to the experiments when the total volume concentration of
the fine and coarse aggregate reaches 70% or after.

(5) The elastic moduli of concrete do depend on the
volume fraction of the aggregate, and the material
properties of the constituents. The predicted formula
based on those factors may be the better way to estimate



the elastic moduli of concrete rather than ACI Code,
especially the total volume fraction of aggregates less that
70%.
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Fig. 7 Comparisons of Young modulus at aged 28 days.
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Fig. 8 Comparisons of Young modulus at aged 56 days.
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Appendix A: Material Constants

Without any summation over any repeated indices
and with i, j, k, always following the 1, 2, 3 even
permutation, the constants are

pl = 1+ Cl[(all + alZ + alS)(S331l + S2211 + Sllll - l)
+ (aZl + a22 + a’23)(83322 + S2222 + S1122 - 1)
+ (a31 + a‘32 + a33)(s3333 + S2233 + S1133 - l)]/37

p2 = (all + alZ + a'13 + a'21 + a'22 + a‘23 + a'31 + a32
+ay,)/3,

b, =a,;(Syy; =1 +a5S,55 + 84 S5,
b, =[(a;; +a55)(Syyy, —1) + (8, +a5)S,15
+(ag, +85)Sy51/2,

bs = [all (52211 + S3311) +ay, (52222 + S3322 _1)
+ a31(83333 + S2233 _1)]/2 )

b, =[(3ag; +a3,)(Sasss —1) + (38, +ay) Sas



+ (38, +a,,)S5;; + (38, +853)S 505
+(3a,, +a,)(S,, —D+(3a, +a8,3)S,,,
+2b,,(2S,,,; —1)1/8,
by =[(38,, +a33)(Ssa3; —1) + (38, +8,5)S335,
+(3a,, +8,3)S53;; + (385 +85,)S,5s
+ (38, +a8,)(S,, — D)+ (Ba,; +a,)S,,,
—2b,,(2S .5 —1)]/8,
b, =[b,(2S,,;, =1 +b,(2S,,, -]/ 2,
b, = =/ 1) I+ 280, (e | 1y = 1)1,
by = (0= sy ] o) ML+ 28105 (g [ 110 =11
by = (U= sty [ o) ITL+ 28y (pty | 110 = 1)1,
a; = [3(r, —x4) (1t = 146)" (S jj S = S i Sk)

— (g = pa0) (e ty — 10 1, )(S i T Sk — Sjjkk - Skkjj)

+ 3 (1, — o) (1, — /uo)(sjjjj + Sy )
+ 310 1o (1 — 1o) + g (i 1y — Ko 110)11 A,

ay = [3(rc; — x) (1 — /uo)z(siikkskkjj = Siii k)
— (g — 1a0) (e g — 1041 ) (S + Skkjj - Siijj

A= (1, — o)y tty = 10 14 )[Saaa5 (Sya11 + S0

- S112:2 - S2211) + S'332:2 (81133 + S2211 - S1111 - S2233)

+ S3311(S1120 + Sipss — Siiz3 — Soop0)
+S,11(S1133 = Si195) + Sppr (Si111 — Sypa3)
+S,,33(S1100 = Spppp )] +3(x; —x4) -

(41 = 16)*[Sa333 (11225 2211 — S1111S 2202)

+ S35 (S1111S 9933 = S113359011) + Sazpy -
(S1133S 9990 = S1129 S p0aa )1+ 314 (6, — K) -
(£t — 10)(S1122S po11 + S1123S 3311 + S2335 332

- S111182222 - S222283333 - S333381111)

— o (K g — Ko 441)(Sqp3y + Syi00 + Sy + Sons

+S0095 + S5 + Sagpy + Sazp + Sazes) — ok -

(1 = 16 )(Syqpy + Spppp + Sazes —1) = 3o o1ty

Appendix B: Eshelby’s Sy, Tensor

Eshelby’s tensor is in terms of the Poisson ratio of
the matrix v, and the shape of the inclusion. It has a
property of Sy, =S =Sy . The three radii of an

= Six)
— 3ty (icy — 10 ) (s — o) S + o (i ptg — Ko 11)1 A,

ellipsoid are a,, a, and a;, wherea, >a, >a,.
The properties of an ellipsoid within the matrix can be
described by twelve independent components of the
Eshelby tensor, which are

Sy =8y 1) + @ =2v) 1 1/[87(1—v,)]
Si122 :[azzllz —(1-2v) 1, 1/[87(1-v,)]
Siigs = [a§|13 —(=2v) 1, 1/[87(1—v,)]

Sior = [(a12 + azz)llz +(L=2v)(1, +1,)]1/[167(L—v,)]
and all other non-zero components are obtained by the
cyclic permutation of (1, 2, 3). The Sijkl tensor which
can not be calculated from above are zero. The |, and
I;; components are
|1 = (47zalaza3)[|:(9’ k) - E(@, k)]

N(a —a7)(a; —a3)"?,

|3 = (47zalaza3)[a2 (a12 - a§)1/2 /(ala3) - E(@, k)]
Nl(a; —a3)(@ —a3)"?,

I, =4z 1,1, ,

Iy :[4ﬂa§(a12 _a§)+a12(a§ +2a§ _3a12)|1
+a; (a5 —a3)l,]/[3a; (a7 —a;)(a; —a))],

l,, = 4z{[a/a; —a;(2a; +2a; —3a;)]

+a’(af +2aZ -3a’)l, +a’(a’ +2a’ -3a’)l.}
/[3a; (a} —a;)(a; —a;)],

I =[47a; (a5 —a7) +a; (a; —a;)l,

+a;(a; +2a; —3a;)1,]/[3a; (a —a;)(a; —a;)]
I =(47Z'_2|1_|3)/(a12_a22)’

|13 = (Is - Il)/(a12 _as?)’
I, =(I,+21,-4r)/(a; —a?)

and the elliptic integrals of the first and the second kind
are

F(0,K) :j:[l/(l—kzsin2 w)M2]-dw,

E(0.K) = [ (1-K?sin? w)""? - dw

where
O =sin"'(1-aZ/a’)"?,

k=[(af —a7)/(a; —aj)]"*.

E/E,



