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Abstract 
 
This research is to examine the elastic Young modulus of 
concrete predicted in ACI Code. By measuring each 
compositions of concrete, the experimental material 
properties of concrete at the age of 14, 28 and 56 days are 
found. The results show that the theoretical M-T moduli 
are close to the experimental results, but not those 
predicted from ACI Code. The moduli of concrete 
calculated from ACI Code and compared to the 
experimental data are only good for the aggregates at least 
reaching 70% volume fraction of fine and coarse 
aggregates. The elastic modulus of concrete estimated 
from the fracture stress is not a proper way, and will 
overestimate when the volume concentration of 
aggregates is low. The proposed theory seemly is suitable 
for evaluating the elastic loduli of concrete. 
 
 
1. Introduction 
 

Concrete indeed is a composite material consisting of 
cement paste (or binders), fine and coarse aggregates. 
Many factors such as the mix proportion and the material 
properties of the constituents dominate the strength and 
the elastic moduli of concrete. The upper bound and lower 
bound of the effective elastic moduli can be found, 
depending on the volume fraction and the elastic moduli 
of the compositions, under a prescribed displacement and 
prescribed traction respectively [1]. This means that the 
material properties of the compositions theoretically 
control the elastic moduli of the composite. Meanwhile, 
many theoretical models and experimental results [2-7] 
also show the elastic moduli of concrete rely on the 
material properties of cement paste and the aggregates. 
Nevertheless, the estimation of elastic Young modulus in 
concrete commonly used is according to ACI Code as 

'4730 cc fE    (N/mm2)                (1) 

where Ec=elastic Young modulus of concrete and '
cf = 

fracture stress at the 28th day. It seems that ACI Code 
mainly considers the fracture stress as a dominated factor 
to calculate the elastic Young modulus of concrete. 
Obviously, these are different views between in practices 
and in engineering uses 

 
The aim of this paper is to analyze the elastic moduli of 

concrete obtained from the theoretical models, the 
experiments and ACI Code, and try to find which one is 
reliably predicted method. The presented theory here is 
based on the mean-field approach [8-10], and takes 
concrete as a two-phase composite with the mortar 
(matrix) and the coarse aggregate (inclusion). The coarse 
aggregate is assumed to be perfectly bonded in the mortar, 
and has the same shape but with different sizes. To cover 
all possible shapes of the aggregate from fiber, sphere and 
disc, the inclusion shape is taken as an ellipsoid. In the 
two-phase system the inclusions (coarse aggregates) will 
be referred to as phase 1, and the matrix (mortar) as phase 
0. The volume fraction of the r-th phase will be denoted 
by rc . Then the elastic moduli of the r-th phase will be 
written as rL , with the bulk and shear components 

)2,3( rrrL  . 
 
 
2. Experiments 
 

We used Type I Portland cement, Ottawa standard sand 
satisfying ASTM C778 and the coarse aggregate from 
Lau-Lung River near Kaohsiung and Pingtung area to 
make concrete. The material properties of sand and coarse 
aggregate are shown in Table 1.  

 
Table 1. Physical properties of fine and coarse aggregates. 
Materials Fine aggregate Coarse aggregate

Specific gravity 2.65 2.61 

Water contents (%) 0.11 0.90 

SSD (%) 0.24 1.12 

Particle size (mm) 0.3 4.75~9.5 

 
In order to simplify the material parameters, the matrix 

consists of cement paste with w/c=0.44 (water/cement) 
and sands with 20% fixed volume fraction of concrete. 
Concrete was produced by changing the volume fraction 
of the inclusion (coarse aggregates) with 1c =0, 0.1, 0.3 
and 0.5, where 1c = volume concentration of coarse 
aggregates. The mix design of concrete is also displayed 
in Table 2.  

 
Table 2. Mix design of concrete (kg/m3). 

1c  Water Cement Sand Coarse aggregate

0 558 1269 635 0 

0.1 488 1110 635 312 

0.3 349 792 635 938 

0.5 209 475 635 1560 



 
The manufacture and the curing of concrete samples 

follow the procedures of CNS 1230 and CNS 1231 with 
specimen size 5φ×10cm and 10φ×20cm. The MTS 
machine was used to supply a compressive load during 
the testing. Before the test began, the samples had been 
preloaded 0.5kN~1.0kN to avoid the unnecessary 
electronic signals because of the sensitivity of the 
extensometer. We applied a uniaxial compressive stress to 
samples by following CNS 1232 with a constant strain 
0.002mm/sec when the ages of concrete reach the 14th, 
28th and 56th day respectively, and tried to determine the 
fracture strength, the Poisson ratio ν and the elastic 
Young modulus E of concrete, where the elastic Young 
modulus calculated from ASTM C49. In the meantime, 
we took the cores of the coarse aggregate with 5φ×10cm 
specimen to find its elastic moduli. 

 
After measuring the elastic Young modulus and the 

Poisson ratio of concrete, we use the relation of elastic 
moduli to calculate its bulk and shear modulus as follows. 

)21(3 





E
                           (2) 

)1(2 





E
                           (3) 

where   and   are the bulk and the shear modulus of 
concrete individually. The experimental results of the bulk 
and shear moduli for mortar and the coarse aggregate are 
shown in Table 3. 
 
Table 3. Elastic moduli of mortar and coarse aggregates. 

The ages 0 (*) 
0 (*) 

1 (*) 
1 (*) 

14th day 9.08 7.59 19.44 14.58 

28th day 10.29 8.37 19.44 14.58 

56th day 11.30 9.20 19.44 14.58 

* the unit is GPa. 
 
 
3.  The M-T Moduli 
 

Many predictions of the elastic moduli, based on the 
empirical formula and micromechanics models, have been 
proposed. In presence, we shall use the Mori-Tanaka [8] 
method to determine the effective moduli of the 
two-phase composites, or the so-called M-T moduli. 
Detailed exposition of this method based on Eshelby’s [9] 
equivalent transformation strain (or eigenstrain) * can 
be found in Weng [10].  
 
  With the three-dimensional randomly oriented 
ellipsoidal inclusions the composite as a whole is 
isotropic, characterized by its effective bulk and shear 
moduli, or   and   respectively. Following the 
eigenstrain approach [6], one obtains the explicit forms of 
the effective bulk and shear moduli to be 

)]/(1/[ 1210 ppc  ,                (4) 

)]/(1/[ 1210 qqc  ,                 (5) 

where the material constants 1p , 2p , 1q  and 2q  are 

3/)](2[1 5432111 bbbbbcp  ,

2322211312112 ( aaaaaap   

3/)333231 aaa  , 

15/]657)(2[1 65432111 bbbbbbcq  , 

)(2)(3[ 3322112313122 aaabbbq   

15/)]( 323123211312 aaaaaa  .  (6) 
The constants ija , ijb  and ib  depend on the moduli 
of the constituents and Eshelby’s S tensor for an 
ellipsoidal inclusion; their values are listed in Appendices. 
 

The explicit form of the effective bulk and shear 
moduli with the spherical inclusions, a special case, can 
be found from Eq. (4) and Eq. (5) to be 

)](4)43([ 1001010   c  

)](343/[ 10101   c              (7) 

 )()43(5[ 1000010  c    

)43(5/[)]89( 00000    

)]2)((6 00100   c           (8) 

where 10 1 cc   is the volume fraction of the matrix. 

Eqs. (7)-(8) will be taken as the theoretical results of 

concrete. 
 
 
4. Results and Discussion 
 

The fracture stress of concrete with different volume 
concentration of coarse aggregate at aged 14, 28 and 56 
days are shown in Fig.1, and the strength decreases as the 
coarse aggregate increases.  
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Fig. 1 Fracture stress of concrete. 

 
The elastic Young moduli of concrete increase with 

increasing different volume fraction and the ages are 
depicted in Fig. 2, where the dotted lines are the 
experimental data and the solid lines are M-T moduli 
calculated from Eqs. (2)-(3) and Eqs. (7)-(8). In Fig.3, the 
increasing ratios of Young modulus 0/ EE  gradually 
decrease as the ages are old, but gain linearly as the 
volume fraction of aggregates rises, where E0=Young 



modulus of mortar.  
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Fig. 2 Elastic Young modulus of concrete. 

14天齡期

28天齡期
56天齡期

14天齡期

28天齡期

56天齡期

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

0.0 0.1 0.2 0.3 0.4 0.5 0.6

粗骨材含量

E
/E

0

 
Fig. 3 Increasing ratio of Young modulus. 

 
Fig. 4 is the comparisons between the experiments and 

the M-T moduli of the shear modulus of concrete. The 
variations between them become large when 1c  
increases, especially at 1c =50%. The ratios of the shear 
modulus also decrease when the ages are old, like Fig. 3, 
shown in Fig.5.  
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Fig. 4 Elastic shear modulus of concrete. 
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Fig. 5 Increasing ratio of shear modulus. 
 

To the end, we compare the Young modulus calculated 
from ACI 318-89 or Eq. (1) to M-T moduli and the 
experiments. Fig. 6, 7 and 8 are the Young modulus at 
aged 14, 28 and 56 days respectively. The upper bounds 
and lower bounds of Young modulus are determined 
under a prescribed displacement and prescribed traction 
respectively as follows. 

1100 EcEcE                          (9) 

0110

10

EcEc

EE
E


                       (10) 

Apparently, the Young modulus calculated from ACI 
Code is overestimated when 1c  is less than 30% 
depicted in Figs. 6-8. However, the estimations from the 
M-T approach are close to the experiments. This means 
that the Young modulus determined from M-T method is 
better than that from ACI Code.  
 
 
5. Conclusions 
 
  After we compare the elastic moduli of concrete 
obtained from the experiments, the micromechanics 
approach and ACI Code, and find the following results. 

(1) The M-T moduli of concrete with the spherical 
inclusions are always lower than those ones in 
experiments. 

(2) The elastic Young and shear moduli of concrete 
calculated from M-T approach are the pretty reliable 
estimations by comparing to the experimental results, 
especially at increasing the volume concentration of 
aggregates and the longer ages of concrete. 

(3) When the volume fraction of coarse aggregates 
reaches 1c =50%, the M-T shear modulus of concrete 
vary from the experiments. 

(4) The elastic Young modulus of concrete determined 
from ACI Code is obviously overestimated, and will close 
to the experiments when the total volume concentration of 
the fine and coarse aggregate reaches 70% or after.  
(5) The elastic moduli of concrete do depend on the 
volume fraction of the aggregate, and the material 
properties of the constituents. The predicted formula 
based on those factors may be the better way to estimate 



the elastic moduli of concrete rather than ACI Code, 
especially the total volume fraction of aggregates less that 
70%. 
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Fig. 6 Comparisons of Young modulus at aged 14 days. 

ACI公式值

上限值

28天齡期
28天齡期

下限值

19

23

27

31

35

0.0 0.1 0.2 0.3 0.4 0.5 0.6

粗骨材含量

混
凝

土
楊

氏
模

數
E

值
(G

P
a)

 

Fig. 7 Comparisons of Young modulus at aged 28 days. 
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Fig. 8 Comparisons of Young modulus at aged 56 days. 
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Appendix A: Material Constants 
 

Without any summation over any repeated indices 
and with i, j, k, always following the 1, 2, 3 even 
permutation, the constants are 

)1)([(1 11112211331113121111  SSSaaacp
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Appendix B: Eshelby’s ijklS  Tensor 
 

Eshelby’s tensor is in terms of the Poisson ratio of 
the matrix 0  and the shape of the inclusion. It has a 
property of ijlkjiklijkl SSS  . The three radii of an 

ellipsoid are 1a , 2a  and 3a , where 321 aaa  . 
The properties of an ellipsoid within the matrix can be 
described by twelve independent components of the 
Eshelby tensor, which are 
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and all other non-zero components are obtained by the 

cyclic permutation of (1, 2, 3). The ijklS  tensor which 

can not be calculated from above are zero. The iI  and 

ijI  components are 
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and the elliptic integrals of the first and the second kind 
are 
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