
 
 

1 INTRODUCTION 

The crack density calculation of cementitous materi-
als depends on the number, the length, the width, the 
arrangement and the distribution of the cracks inside 
the material, and the observation methods. For a 
scanning electron microscope (SEM), for example, 
different observation magnifications of the specimen 
will result in different measurements of the cracks. 
Although many theoretical and experimental meth-
ods have been proposed to estimate and measure the 
crack density for brittle solids (Attiogbe & Darwin 
1986, Attiogbe & Darwin 1987, Erick 1988, Oilliv-
ier 1985), it is still difficult to know the true crack 
density of cement-matrix composites up to now.  

In this paper, one tries to find a representative 
crack density parameter (RCDP) of cementitous ma-
terials depending on the SEM magnifications, and 
this RCDP will be examined by the micromechanics 
theory and the experiments to confirm the reliability 
in use. Two SEM observations were chosen to view 
the microcracks: fixed position and random position, 
where the fixed view means that the inspection posi-
tion of the cracks always locates in the middle of the 
sample, and the random view is the cracks met by 
chance without any favorite positions.  

2 EXPERIMENTAL PROGRAM 

The binder consists of cement, fly ash and superplas-
ticizer (SP), and water-to-binder ratio (w/b) is 0.36, 

where superplasticizer conforming to ASTM C494 
Type-G with a specific gravity of 1.1. The total vol-
ume fraction of the aggregates is =1c 0.67 with 
river sand having a specific gravity of 2.60 and the 
absorption of 2.5 %, and coarse aggregate is a kind 
of crushed sandstone with a specific gravity of 2.57 
and the absorption of 1.45 %. A mixture proportion 
of high-performance concrete (HPC) with w/b=0.36 
is shown in Table 1, and the slump is 30200 ± mm. 

 
Table 1.  Mixture proportion of high-performance concrete*.  

Water Cement Fly ash Sand Gravel SP 
160 378 67 730 1020 2.23 

*Unit: (kg/m3) 
 

Material age is of 28 days, and specimen sizes of 
concrete made by steel molds are of 200100 ×φ mm 
and 350100100 ×× mm, respectively, to measure 
the elastic moduli and the fracture toughness. At 
least six specimens were used to examine the mate-
rial properties. Specimens were under a uniaxial 
compression by MTS machine with a constant strain 
rate 5101 −×=ε& /sec to measure the longitudinal and 
lateral strains and plot the stress-strain curves. Frac-
ture toughness was calculated from the three-point 
bending test. 

The crack density of high-performance concrete 
was determined based on the SEM measurements. 
The size of SEM specimens is about 1.533 ×× mm. 
The length and the number of microcracks were 
measured from SEM specimens when the material 
was under no load, 0.3 '

cf  and 0.5 '
cf  respectively 

Determination of representative crack density of cementitious materials 

H. H. Pan, Y. W. Chen & D. H. Lin 
Dept. of Civil Engineering, Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan 
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in the uniaxial compression test, and was under the 
fracture strength for the calculations of the fracture 
toughness, where '

cf  is the peak strength of con-
crete. The observation positions of SEM specimens 
were at the fixed position and the random one, re-
spectively. Each observation point was viewed by 
five magnifications: 500×, 1000×, 3000×, 4000× and 
5000×. 

To evaluate the crack properties, one used Photo-
shop7.0 software to deal with the SEM picture con-
verted into the monotonic white and black color, and 
SigmaScan Pro5 software to measure the number 
and the length of cracks. Besides, the window size of 
the observation in SEM was also measured. Figure 1 
is the SEM picture at a magnification of 4000× 
while HPC was under the load 0.3 '

cf , and Figure 2 
is an image transformation of Figure 1 by Photo-
shop7.0 software. 

 

 
Figure 1. SEM-picture of cracks with 4000× at 0.3 '

cf . 
 

 
Figure 2. Image transformation of Figure 1 by Photoshop7.0 
software. 

3 THEORETICAL ANALYSIS 

3.1 Crack density 
Because SEM can only scan a small area of the 
specimen at a time to view the microcracks, it is dif-
ficult to find out the true size and the shape of mi-
crocracks and their distributions in the material. That 
is why one needs to establish some rules to 
straighten out the meaning of crack density in use, 
and those rules have to be confirmed correctly. 

The definition of crack density parameter, ac-
cording to Budiansky & O’Connell (1976), is 

P
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where η = crack density, N = total number of cracks 
per unit volume, A = area of the crack, P = perimeter 
of the crack, and the angle brackets >⋅< = volume 
averaging of the quantity. 

To determine the crack density, assuming that the 
SEM specimens can suitably represent the realistic 
cracks inside the material, and all cracks are convex 
and have the same size. Then, a theoretical calcula-
tion of the crack density measured from two-
dimensional cracks is used as (Budiansky & 
O’Connell 1976) 
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where l = average trajectory of the cracks and M = 
total crack number per unit area in SEM window. 
Let n, h and w be referred to the crack number, and 
the height and the width of window, respectively. 
The total crack number per unit area then is calcu-
lated by 

wh
nM
×

=                                (3) 

Here, the computation of the crack number n in 
SEM winder is following the rule that the crack at an 
obvious turning point is treated as the beginning of a 
new crack. For example, number 1 crack marked in 
Figure 2 consists of three cracks in the calculation, 
where two straight cracks and a bended crack were 
counted approximately.  

3.2 Effective elastic moduli and fracture toughness 

High-performance concrete is assumed to be a two-
phase composite containing concrete without cracks 
as the matrix and the cracks as the inclusion. At-
tiogbe (1987) proposed an analytical procedure used 
to convert two-dimensional crack data into three-
dimensional crack distributions in cement paste and 
mortar, and found that the degree of anisotropy K is 
about -0.15 when the compressive strain is less 
0.002. Thereby, the cracked concrete (composite) as 
a whole is isotropic if the strain is small. 

Pan & Weng (1995) used the inclusion theory 
(Mori & Tanaka 1973, Weng 1984) to examine the 
effective elastic bulk modulus κ  and effective 
elastic shear modulus μ  of the composite, and con-
cluded that the elastic moduli of isotropic cracked-
materials are of less crack-shape sensitivity. Besides, 
the effective elastic moduli of the material with cir-
cular cracks were also found by 
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where 0κ = elastic bulk modulus of the matrix (no 
cracks), 0μ = elastic shear modulus of the matrix, 
and 0ν = Poisson’s ratio of the matrix. Due to the 
less crack-shape sensitivity, one can use Equation 4 
and Equation 5 to determine the effective elastic 
moduli of isotropic HPC containing arbitrary shapes 
of cracks. The elastic relation still holds for 

)3/(9 μκκμ +=E . 
From Equation 4, Equation 5 and the Hooke’s 

law, one can easily find out the relation of Poisson’s 
ratio between the composite (cracked material) and 
the matrix as  
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where ν = Poisson’s ratio of the cracked material. 
Meanwhile, the fracture toughness of the brittle 

material is usually expressed by the critical stress in-
tensity factor cK . Let the stress intensity factor of 
the matrix, the crack-tip stress intensity factor of the 
composite and the stress intensity factor change 
(toughness chance) be denoted as K0, tipK  and 

KΔ , respectively, where the crack-tip stress inten-
sity factor KKKtip Δ−= 0  and the critical stress in-
tensity factor of the composite KKKc Δ+= 0 .  

Based on a micromechanics approach, the ana-
lytic solution of toughness change for a two-phase 
isotropic composite under Mode I loading has been 
derived (Pan 1999) and the form is 

gf
K
Ktip =

0

                              (7) 

where f and g are material parameters. It is noted 
that, in Equation 7, the ratio 0/ KKtip  less than one 
implies material toughening. From Equation 7 and 
the relations of tipK , 0K , KΔ  and cK , the stress 
intensity factor of the material with no cracks has 
the form as 

gf
KK c

−
=
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If the cracked material contains circular cracks, the 
material parameters f and g are 
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where 1k = main crack contour factor, and the value 
072.01 =k  for the steady-state propagating crack 

and 24/11 =k  for the stationary crack respectively.  
Now, in our case, HPC containing microcracks is 

isotropic. One can use a uniaxial compression and 
SEM to find the elastic Young modulus, Poisson’s 
ratio and the crack density η  of HPC. Of course, 
the other two elastic moduli κ  andμ  are also de-
termined from the isotropic relation of HPC.  

Once the crack density η  and Poisson’s ratio ν  
of the cracked body are known, the Poisson ratio of 
HPC without cracks ( 0ν ), calculated from Equation 
6, is determined. This Poisson’s ratio 0ν  allows us 
to obtain the elastic bulk modulus 0κ  and shear 
modulus 0μ  respectively by substituting 0ν  and 
η  into Equation 4 and 5, so as to find Young’s 
modulus 0E  simultaneously. Thereby, the same 
material subjected to new compressive loads will 
produce new crack densities, the predicted effective 
bulk and shear moduli, κ  and μ , are found by 
Equation 4 and 5.  

Similarly, from Equation 8, one can calculate the 
stress intensity factor of the matrix 0K  if the crack 
density is given. As the material properties of HPC 
without microcracks are found theoretically, the 
stress intensity factor increment KΔ  due to the mi-
crocracking is finally determined by means of Equa-
tion 7.  

4 RESULTS AND DISCUSSION 

4.1 Representative crack density parameter 
As one knows, different observation magnifications 
in SEM measurements will lead to different values 
of crack density in estimations. In this paper, one 
tries to suggest a representative crack density pa-
rameter that can suitably employ to estimate the me-
chanical properties of cracked cementitious materi-
als.  

High-performance concrete with 67.01 =c  was 
tested by the uniaxial compression and had the peak 
stress ='

cf 48.56 MPa. SEM with five magnifica-
tions from 500× to 5000× and the field at fixed and 
random position were taken to view the cracks after 
the designed loading reached, and the results are 
shown in Figure 3. The estimated crack densities of 
high-performance concrete at the random position of 
the view are always greater than those at the fixed 
position regardless the magnifications, and both val-
ues approach to asymptotes as the magnifications in-
crease. 

Figure 4 shows the crack densities of concrete in 
the random view applied to no load, '0.3 cf , '0.5 cf  
and '

cf , respectively. Those crack densities also 
tend to some asymptotic constants when the magni-



 
 

fications are greater than 3000×. From Figure 3 and 
Figure 4, it seems that the estimated crack density 
may be insensitive to the magnifications and the ob-
servation positions if the magnifications are of 3000
× or larger, and this range of crack density might be 
chosen as the representative crack density parameter 
which we can use to evaluate the material properties. 
However, it is still needed to inspect carefully. 
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Figure 3. Crack density of different views after failure. 
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Figure 4. Crack density of random position with different 
loads. 
 

Although different SEM magnifications will lead 
to different crack densities in calculations, the prop-
erties of cracked material are unique in experiments. 
To examine the effect of the magnification, average 
crack densities calculated from two groups of 500× 
~ 5000× and 3000× ~ 5000× were chosen to esti-
mate the elastic moduli of the material without 
cracks. 

The elastic moduli of high-performance concrete 
with 67.01 =c  subjected to a uniaxial compression 
0.52 '

cf  are shown in Table 2. Those experimental 
data allow us to theoretically find the elastic moduli 
of material containing no cracks (matrix). For exam-
ple, the experimental crack densities at the magnifi-
cation range of 3000× ~ 5000× in fixed view and 
random view are 0.123=η  and 0.146=η , re-
spectively, and then from Equation 6 the Poisson ra-
tio of concrete without cracks 0ν  is found to be 
0.289 and 0.297 in turns. 

Table 2.  Elastic moduli under 0.52 '
cf . 

E（GPa） ν μ（GPa） κ（GPa） 
21.39 0.244 8.60 13.92 

 
From Table 2 and Equations 4-10, the calculated 

results for the shear modulus, bulk modulus and 
fracture toughness of the matrix (no cracks exist) are 
shown in Table 3, and their statistical variances are 
also shown in Table 4. In Table 3, the differences of 
average material properties at the magnification 
range of 500× ~ 5000× are pretty large in both 
fixed view and random view. In Table 4, the vari-
ances of elastic moduli and fracture toughness at the 
magnification range of 3000× ~ 5000× are far less 
than those of 500× ~ 5000×. Therefore, the crack 
density at the magnification range of 3000× ~ 5000× 
is suitable for selecting as the representative crack 
density parameter in concrete. 
 
Table 3.  Average properties of the matrix. 

Magnification Properties Observa-
tion 500x~5000x 3000x~5000x
Fixed 14.61 10.07 

0μ (GPa)
Random 18.79 10.33 

Fixed 40.97 20.56 
0κ (GPa)

Random 61.69 22.06 

Fixed 0.615 0.774 0K  

( mMPa ) Random 0.581 0.695 

 
Table 4.  Variance of average properties of the matrix. 

Magnification Properties Observa-
tion 500x~5000x 3000x~5000x
Fixed 661.02 3.67 

0μ (GPa) 
Random 3575.78 15.01 

Fixed 0.048 0.017 
0κ (GPa) 

Random 0.028 0.014 

Fixed 661.02 3.67 0K  

( mMPa ) Random 3575.78 15.01 

 

4.2 Theoretical verification 
Now the representative crack density parameter η  
is selected at the magnification range of 3000× ~ 
5000× in use. This representative crack density pa-
rameter (RCDP) is considered as an important factor 
to evaluate the mechanical properties of cracked ma-
terial. Here, the elastic moduli and fracture tough-
ness of the matrix in Table 3 at the range of 3000× ~ 
5000× are taken to estimate the effective bulk and 
shear moduli, and fracture toughness of high-
performance concrete containing the aggregate 

67.01 =c . 
Based on the material properties of the matrix in 

Table 3 and the representative crack density parame-



 
 

ters measured from HPC subjected to no load, 0.3 '
cf  

and 0.5 '
cf  respectively, the experimental values and 

theoretical calculations for the effective bulk and 
shear moduli are shown in Table 5. The predicted ef-
fective bulk and shear modulus at fixed view are 
close to those at random view regardless of the ap-
plied stress. It means that one can use the SEM ob-
servation either at fixed view or at random view to 
measure the crack properties if the magnification is 
of 3000× ~ 5000×.  

 
Table 5.  Comparisons of effective elastic moduli. 

Properties Observation No load 0.3 '
cf  0.5 '

cf  

Experiment 8.66 7.74 7.37 

Fixed 9.27 9.01 8.65 μ  (GPa) 

Random 9.09 8.82 8.68 

Experiment 14.03 12.53 11.93 

Fixed 16.59 15.48 14.13 κ  (GPa) 

Random 15.81 14.76 14.22 

Fixed 0.062 0.085 0.118 
η 

Random 0.099 0.124 0.138 

 
Compared with the experimental data in Table 5, 

the predicted effective elastic bulk and shear moduli 
have the errors from 5% to 18% approximately. Ta-
ble 6 shows the fracture toughness for experimental 
data and the predictions. The predicted fracture 
toughness is in an acceptable range as compared 
with the experimental data in Table 6.  

 
Table 6.  Comparisons of fracture toughness. 

Properties Experiment Fixed Random

cK ( mMPa ) 0.512 0.550 0.542 

η --- 0.238 0.149 

 
Finally, the effective Young modulus of high-

performance concrete subjected to different loads is 
calculated with five magnifications, and the results 
are shown in Table 7 and Figures 5-6. By comparing 
with the experimental data, the predicted results cal-
culated from the crack density at 500× and 1000× 
are not acceptable shown in Figures 5-6. Let the 
stress-strain relations in Figures 5-6 be enlarged near 
the experimental curves and re-plotted in Figures 7-
8, obviously, the predicted effective Young modulus 
calculated from the magnification of 3000× is close 
to the experimental data. Hence, the better choice for 
representative crack density parameter is the cracks 
measured at the magnification near 3000×.  
 

Table 7.  Comparisons of effective Young modulus (GPa). 

Observation Magni-
fication  No 

load 0.3 '
cf  0.5 '

cf

Experiment   21.55 19.25 18.33 
500x  5.87 6.18 8.243 

1000x  10.49 11.32 10.63 

3000x  22.81 21.09 20.13 

4000x  23.62 23.46 21.97 

Fixed 

5000x  23.89 23.54 22.70 

500x  5.13 12.37 4.45 

1000x  9.44 17.21 12.73 

3000x  21.22 20.07 19.41 

4000x  22.75 22.36 22.01 

Random 

5000x  24.96 24.18 23.99 
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Figure 5. Stress-strain curves at fixed view. 
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Figure 6. Stress-strain curves at random view. 
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Figure 7. Enlarged stress-strain curves at fixed view. 
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Figure 8. Enlarged stress-strain curves at random view. 

5 CONCLUDING REMARKS 

Based on SEM measurements and the verification of 
the micromechanics approach, the estimated crack 
density at the magnification range of 3000× ~ 5000× 
can be considered as the representative crack density 
parameter in concrete or cementitious materials. 
This representative crack density parameter allows 
us to determine the mechanical properties of cracked 
cementitious material if the microcracks are ran-
domly oriented. For high-performance concrete with 
the volume fraction of the aggregates 67.01 =c , the 
representative crack density is better observed 
around the magnification of 3000×. 
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