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Abstract: A micromechanics-based model is proposed to determine the nonlinear stress-strain relations of cement-matrix composites at
different concentrations of inclusions �aggregates�. We first conducted some experiments to uncover the stress-strain behavior of the
cement paste with a water-to-cement ratio of 0.45, and those of the mortar with the same cement paste but at three different volume
concentrations of aggregates. The behavior of the cement paste is then simulated by Burgers’ rheological model. In the development of the
composite model, we extend the linear elastic response to the nonlinear one through the replacement of elastic moduli by the correspond-
ing secant moduli. The nonlinear stress-strain curves of the cement-matrix composite are then determined from those of the cement paste
and inclusions. It is shown that the predicted stress-strain curves of the mortar are in close agreement with the experimental curves up to
an aggregate volume fraction of 49% or 60 wt %.
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Introduction

Although the fracture behavior of the cement-matrix composite is
generally brittle, its stress-strain relation can be nonlinear, with a
characteristic that is dependent on the nonlinear behavior of the
cement-based binder and other factors. Several models have been
proposed to describe the stress-strain behavior of the cement-
matrix composite �Popovics 1973; Carreira and Chu 1985; Harsh
et al. 1990; Almusallam and Alsayed 1995; Wee et al. 1996; At-
tard and Setung 1996�. Most of these models, however, preset the
influence factors, such as initial Young’s modulus and peak
strength, through inverse fitting of the measured composite data
�Popovics 1973; Carreira and Chu 1985; Almusallam and Alsayed
1995; Attard and Setung 1996; Yi et al. 2003�. As such, the com-
posite properties were not strictly derived from the properties of
the individual phases. The derived stress-strain relations of the
composite, thus, cannot be used as the aggregate content changes,
and for application to a new composite system, the Young’s
modulus and/or peak stress must be fitted again. Since concrete
consists of the cement paste �or the binder� and sand stone aggre-
gates, its properties are highly dependent upon the properties of
the constituent phases, and the volume concentration and shape of
the aggregates. It seems desirable that a theory that can be applied
to a range of inclusion concentration and shape is developed for
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the cement-matrix composite, so that the material constants in-
volved do not have to be measured for each and every case.

This is the objective of the present study. Here, we take con-
crete as a composite with cement-based binder as the matrix and
the aggregates as reinforcing inclusions. The nonlinear behavior
of the binder and the volume concentration, shape, and elastic
properties of the aggregates are the dominant factors in this pro-
cess. Inclusions of the same shape but different sizes are taken to
be perfectly bonded to, and homogeneously dispersed in the ma-
trix. The matrix phase—or the binder—is to be broadly viewed as
a combination of cement paste, fly ash, slag, silica fume, and
other admixtures. In this way, the concrete is to be treated as a
two-phase composite with an overall isotropy. The average shape
of the inclusions will be grossly represented by a spheroidal
shape, with an aspect ratio � �the length-to-diameter ratio�, so
that, when �=1, it is spherical, and when it approaches the lim-
iting values of infinity and zero, it will represent very thin needles
and very thin plates, respectively. In the theoretical development,
the matrix will be referred to as phase 0, and the inclusions as
phase 1. The volume concentration of the rth phase will be de-
noted by cr �c1+c0=1�, and its bulk and shear moduli will be
written as �r and �r, respectively.

Before we proceed to develop the composite theory, we will
first conduct some experiments to characterize the nonlinear be-
havior of the cement paste, and then use Burgers’ four-parameter
rheological model to model the matrix behavior. With this model,
it is possible to establish the secant moduli of the matrix at a
given stage of deformation. To go to the composite level, the
Eshelby-Mori-Tanaka theory �Eshelby 1957; Mori and Tanaka
1973� will be invoked to determine the effective elastic moduli of
the composite with randomly oriented ellipsoidal inclusions. Fol-
lowing a previously established procedure �Tandon and Weng
1988; Pan and Weng 1993�, the linear relations will then be ex-
tended to the nonlinear regime by means of the secant-moduli
approach. Unlike the elastic moduli, the secant moduli of the
nonlinear binder will continue to decrease during the course of
deformation, and, thus, they need to be constantly updated in

order to calculate the entire stress-strain curves. Experiments will
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also be conducted to test the behavior of mortar at three different
aggregate concentrations, and the calculated composite results
will be compared with these experiments.

Experiments on the Behavior of Cement Paste
and Mortar

First, cement paste and mortar were investigated and tested. The
water-to-cement ratio �w/c� of the cement paste was 0.45, and
mortar was made from this same cement paste �matrix� but with
different volume concentrations of fine aggregates �inclusions�.
The measured particle size of the inclusions was about
0.7–1.0 mm, a specific gravity of 2.65, and a shape similar to that
of a spheroid with an aspect ratio �=1.13. The elastic bulk modu-
lus and shear modulus of the inclusion are �1=19.46 GPa and
�1=18.44 GPa, respectively.

We have tested four kinds of mortar with the following volume
fractions of aggregates: c1=0, 0.29, 0.38, and 0.49. The speci-
men size was about 100��200 mm. At least six samples of
each specimen were used to examine the material properties.
Here, mortar at c1=0 also represents the cement paste. Specimens
were under a uniaxial compression with a constant strain rate
�̇=1�10−5 /s when the age of the specimen reached the 28th day.
The longitudinal and lateral strains were measured to plot the
stress-strain curves, and to calculate the elastic moduli of the
materials from ASTM C469.

The measured material properties of cement paste and
mortar with different volume concentrations are recorded in
Table 1. The cement paste containing c1=0 has the peak stress
of fu=48.23 MPa, the peak strain of �u=6.22�10–3, Poisson’s
ratio of �0=0.173, and the Young’s modulus of E0=12.47 GPa.
The bulk and shear moduli of cement paste are calculated to be
�0=6.37 GPa and �0=5.33 GPa, respectively. The longitudinal
stress-strain curves of the material are depicted in Fig. 1, where
the solid line at each aggregate concentration is the average
stress-strain curve for the samples tested for each material. From
Fig. 1, mortar with increasing volume fraction of inclusions is
seen to exhibit increasing Young’s modulus and peak strength.
For at a higher volume aggregate content such as c1=0.6, there
was not sufficient cement paste in the mortar to completely bind
the inclusions. In this case, the theory to be developed cannot be
applied.

Now we simulate the stress-strain curve at c1=0 in Fig. 1
to establish the constitutive equation of the cement paste with
w /c=0.45, as

�

fu
= 3.71 � �e−0.408�/�u − 1.0096e−0.947�/�u� + 0.0356 �1�

where �, fu, �, and �u=stress, peak stress, strain, and peak strain
of the cement paste, respectively. The comparison between the
experimental stress-strain curve at c1=0 and Eq. �1� is shown in

Table 1. Measured Properties of Cement Paste and Mortar

c1

fu

�MPa�
�u

��10−3�
E

�GPa� �

0.0 48.23 6.22 12.47 0.173

0.29 49.80 4.22 17.80 0.165

0.38 52.25 4.15 19.48 0.163

0.49 52.90 4.09 22.03 0.161
Fig. 2. After substituting the peak strength and peak strain,
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fu=48.23 MPa and �u=6.22�10−3, into it, one arrives at the
stress-strain relation of this cement paste

� = 178.9 � �e�−0.0656���103
− 1.0096 e�−0.1523���103

� + 1.72 �2�

where the unit for � is MPa. For the 100��200 mm specimen,
the applied uniaxial compression force can be calculated by mul-
tiplying the area of the specimen into Eq. �2� to yield

f��� = 1.405 � 106 � �e�−0.0656���103
− 1.0096 e�−0.1523���103

�

+ 1.351 � 104 �3�

where the unit of f��� is N. One can rewrite f��� in terms of time
t by using �̇=� / t, where �̇=10−5 /s here. It follows that

f�t� = 1.405 � 106 � �e�−0.0656�t − 1.0096e�−0.1523�t� + 1.351 � 104

�4�

where function f�t� is the applied load as a function of time t. This
form will allow us to estimate the material parameters of the
binder using Burgers’ four-parameter model in the next section.
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Fig. 1. Experimental stress-strain relations of cement-based materials
with four volume concentrations of the inclusion
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Fig. 2. Numerical simulation and the experimental stress-strain curve
of cement paste at w /c=0.45
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Rheological Model for the Cement Paste

The stress-strain relations of cement paste or the cement-based
binder are nonlinear. The nonlinearity stems from the inelastic
deformation of the binder itself as well as from possible microc-
racking under loading �Attiogbe and Darwin 1987�. We tried at
least 18 mechanical models, and finally found that the nonlinear
behavior of the binder can be represented by Burgers’ four-
parameter rheological model with two springs and two dashpots,
as shown in Fig. 3.

The applied load f�t� in Fig. 3 has to satisfy the constitutive
relations

f�t� = k1u1 �5�

f�t� = 	1u̇2 �6�

f�t� = 	2u̇3 + k2u3 �7�

where u1, u2, and u3=displacements at k1, 	1, and k2 and 	2,
respectively. Noting that the velocity �= u̇= u̇1+ u̇2+ u̇3, one
readily arrives at the governing differential equation for this four-
parameter model

f̈�t� + � k1

	1
+

k1

	2
+

k2

	2
� ḟ�t� +

k1k2

	1	2
f�t� = k1�̇ +

k1k2

	2
� �8�

Using a constant velocity ��̇=0� and the initial condition f�0�
=0, the load can be expressed as

f�t� = b�em1t − �	1w + b

b
�em2t� + 	1� �9�

where b=constant, whereas m1 and m2=characteristic roots satis-
fying the relations

m1 + m2 = −
	1�k1 + k2� + 	2k1

	1	2
m1m2 =

k1k2

	1	2
�10�

The material constants for the present cement paste are deter-
mined by comparing Eq. �9� to Eq. �4�, as b=1.405�106 N;
m1=−0.0656; m2=−0.1523; and 	1�=1.351�104 N. The veloc-
ity applied on the specimen was �= u̇=2�10−6 m /s, and the vis-
cosity coefficient was found to be 	1=6.75�109 N s /m.

The initial conditions were u2=u3=0 and u=u1. At this stage,
the applied load was f�t�=k1u, and this led to the stress-strain
relation of the cement paste satisfying Hooke’s law or �=Ei�
in which Ei is its initial elastic Young modulus. Thus, the
spring constant has the relation k1=EiA /L, where A=area
of the specimen, and L=length of the extensometer. From the
experimental data, Ei=12.47 GPa and L=100 mm, one has
k1=9.79�108 N /m.

For the other two material coefficients k2 and 	2, one could
use the known values of m1, m2, k1, 	1, and Eq. �10�. The calcu-
lated results are k2=9.30�109 N /m and 	2=1.38�1011 N s /m.
By this process, the four material parameters of the cement paste

η

η1

2

k

k

1

2

f(t)

u3 u2 u1

Fig. 3. Four-parameter model for cement-based binder
with w /c=0.45 are found.
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In light of Eq. �9�, the stress-strain relation in Eq. �1� now can
be recast into

���� = 3.71fu � �em1��103
− 1.0096em2��103

� + 0.0356fu

�11�

To demonstrate the wide applicability of the four-parameter
model to other cement paste and even cement-based binder with
different w/c, we consider the experimental data reported by
Attiogbe and Darwin �1988�, with w /c=0.5. This cement
paste has a peak stress of 45.78 MPa; its test data are depicted
by the solid line in Fig. 4�a�. After determining the constants
as k1=5.8�108 N /m, k2=5.8�109 N /m, 	1=3.1�109 N s /m,
	2=5.0�1010 N s /m for this cement paste, the theoretical curve
is also plotted alongside as a dotted line, displaying a satisfac-
tory agreement. In fact we have found that this four-parameter
model can also be used to simulate their mortar behavior whose
experimental results are reproduced in Fig. 4�b�. This mortar
has a peak stress of 40.38 MPa. With the material constants
k1=1.9�109 N /m, k2=1.6�1010 N /m, 	1=5.0�109 N s /m,

10

strain, x10-3
0 1 2 3 4 5 6 7

st
re
ss
,M
P
a

0

10

20

30

40

50

experimental result [Attiogbe & Darwin, 1988]
Burgers model

cement paste, w/c=0.5

(a)

strain, x10-3
0 1 2 3 4 5 6 7

st
re
ss
,M
P
a

0

10

20

30

40

50

experimental result [Attiogbe & Darwin, 1988]
Burgers model

mortar, w/c=0.5

(b)

Fig. 4. Simulations of stress-strain curve of �a� cement paste;
�b� mortar with w /c=0.5 by the Burger model
	2=6.3�10 N s /m, the simulated curve before softening of the
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mortar is also shown there �Note: Burgers model cannot be used
to model the postpeak—or softening—response, and, thus, the
ensuing composite model should be used to the prepeak range
only�. The spring and dashpot constants for the binder and the
mortar are of course different. This demonstration shows that the
nonlinear curves for both types of materials can be represented by
the Burgers model, but for the mortar, its constants will have to be
determined by simulation for each and every case as its aggregate
content changes. Thus, despite its good simulation, such a curve-
fitting procedure for the mortar has no predictive power. This is
what prompted us to develop a micromechanics-based secant
moduli method so that the nonlinear behavior of the mortar can be
calculated from those of its cement paste at every volume fraction
of the aggregates c1.

Overall Secant Moduli and the Stress-Strain Curves
of Cement-Matrix Composites

The Eshelby �1957� and Mori-Tanaka �1973� theories have their
established applications to the determination of effective elastic
moduli of a two-phase composite containing aligned, two-
dimensional �2D� or three-dimensional �3D�, randomly oriented,
ellipsoidal inclusions. Detailed exposition of this method can be
found in Weng �1984� and Benveniste �1987�, and in Tandon and
Weng �1986� for both two- and three-dimensional randomly ori-
ented spheroidal inclusions. The calculated overall elastic moduli
have been shown to lie on or within the universal Hashin-
Shtrikman bounds �Hashin and Shtrikman 1963; Weng 1990� for
the isotropic case, and on or within the Willis anisotropic bounds
�Willis 1977; Weng 1992� for the aligned configuration. The re-
sults of this method also coincide with those of the double-
inclusion model when the double cells have the same shape and
orientation as the enclosed inclusions �Hu and Weng 2000�. With
the general ellipsoidal inclusions, the explicit forms of the effec-
tive elastic moduli have also been found for monotonically
aligned, 2D randomly oriented, and 3D randomly oriented ar-
rangements �Pan and Weng 1995�.

In this study, the cement-matrix composites are assumed to be
isotropic containing 3D randomly oriented ellipsoidal inclusions
�aggregates�. In this case, the overall effective bulk and shear
moduli of the two-phase composite can be respectively expressed
as �Pan and Weng 1995�

�

�0
=

1

1 + c1�p2/p1�
�

�0
=

1

1 + c1�q2/q1�
�12�

where

p1 = 1 + c1�b1 + 2�b2 + b3 + b4 + b5��/3

p2 = �a11 + a12 + a13 + a21 + a22 + a23 + a31 + a32 + a33�/3

q1 = 1 + c1�2�b1 − b2 − b3� + 7b4 − 5b5 + 6b6�/15

q2 = �3�b12 + b13 + b23� + 2�a11 + a22 + a33�

− �a12 + a13 + a21 + a23 + a31 + a32��/15 �13�

Constants aij, bij, and bi are listed in the Appendix. They are
functions of the volume concentration c1 of the aggregates and
their shape as represented by Eshelby’s S-tensor, as well as the
elastic bulk and shear moduli of both constituent phases.

For the calculation of nonlinear stress-strain relations of the

composite, we extend the elastic moduli to the secant moduli for
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the cement paste and the composite. This is the approach origi-
nally proposed by Tandon and Weng �1988�. As secant moduli
continue to decrease in the course of deformation, their values are
smaller than their elastic counterparts, such as

�0
s 
 �0 �0

s 
 �0 �14�

where the superscript “s” stands for the secant moduli, which are
the direct ratio of stress to the total strain. The secant bulk and
shear moduli of the matrix are related to its secant Young’s modu-
lus E0

s through

�0
s��� =

E0
s���

3�1 − 2�0�
�0

s��� =
E0

s���
2�1 + �0�

�15�

where their dependence on the strain � is now made explicit, and
its Poisson’s ratio �0 is assumed to remain constant �note that,
even though �0 of the binder is taken to be constant, the secant
Poisson’s ratio of the concrete will change; see Eq. �21� below�.
The secant Young’s modulus of the cement paste at a given stage
of deformation can be determined from its basic definition

E0
s��� = ����/� �16�

In the case that aggregates take the ideal spherical shape and
are purely elastic, the overall effective secant bulk and shear
moduli of the composite in Eq. �12� would simplify to

�s =
�0

s�3�1 + 4�0
s� − 4c1�0

s��0
s − �1�

3�1 + 4�0
s + 3c1��0

s − �1�
�17�

�s =
�0

s�5�1�3�0
s + 4�0

s� + c0��0
s − �1��9�0

s + 8�0
s��

5�0
s�3�0

s + 4�0
s� − 6c0��0

s − �1���0
s + 2�0

s�
�18�

which also give the effective elastic moduli of the composite
when the superscript “s” is removed �Weng 1984�. Here
c0=1−c1 is the volume fraction of the binder.

When the average shape of aggregates is not spherical but
rather ellipsoidal, the overall effective secant moduli can be simi-
larly determined by replacing �0 and �0 by �0

s and �0
s , respec-

tively, in the parameters aij, bij, and bi. Recasting Eq. �12� in
terms of the secant moduli, we then have

�s

�0
s =

1

1 + c1�p2/p1�
�s

�0
s =

1

1 + c1�q2/q1�
�19�

where parameters in p1, p2, q1, and q2 also change to their secant
form.

This completes the development of the theory. To briefly reca-
pitulate, the stress-strain curve of the cement-matrix composite at
a given volume fraction of the aggregates c1 is determined as
follows. First, the stress-strain curve of the cement-based binder
�without the aggregates� is obtained from the experiments. The
curves are then simulated by Burgers model or Eq. �11� to deter-
mine the material constants. At this stage, m1 and m2 values from
the simulated curves are found, and the secant Young’s modulus
E0

s��� can be calculated from Eq. �16�, and so can the secant bulk
and shear moduli of the binder from Eq. �15�. The overall effec-
tive secant bulk and shear moduli of the cement-matrix composite
�mortar or concrete�, �s��� and �s���, follow from Eq. �19� or
from Eqs. �17� and �18� if the shape of the aggregate particles is
equiaxial. Finally, the overall effective secant Young’s modulus of

the composite is obtained from
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¯

Es��� =
9�s����s���

3�s��� + �s���
�20�

Though not needed in the plot, the secant Poisson’s ratio of the
composite can be calculated from

�s��� =
3�s��� − 2�s���

2�3�s��� + �s����
�21�

which increases from its initial value upon continuous deforma-
tion. Under a uniaxial compression, the stress-strain curve of the
cement-matrix composite follows as

�̄��� = Es��� · �̄ �22�

which provides the desired overall stress versus strain ��̄ versus
�� relations.

Results and Discussion

Linear Effective Elastic Moduli of the Mortar

In order to evaluate the validity of the proposed approach, we first
examined the effective elastic moduli of the mortar. The elastic
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moduli of cement paste with w /c=0.45 as calculated from the
experiments are �0=6.37 GPa and �0=5.33 GPa, and those of the
aggregates �1=19.46 GPa and �1=18.44 GPa. The average as-
pect ratio of sand was measured to be about �=1.13. The mea-
sured effective bulk and shear moduli of mortar with the volume
concentrations c1=0.29, 0.38, and 0.49 are displayed in Figs. 5
and 6, respectively, with the circle marks. The solid lines are the
Hashin-Shtrikman �H-S� upper and lower bounds, which also co-
incide with the extreme aspect ratios of �→0 and �=1, respec-
tively, as calculated from Eq. �12�. In Figs. 5 and 6, all effective
bulk and shear moduli of the mortar fall within the H-S bounds,
and are also near the bound with the spherical shape ��=1�. This
is consistent with the well-known results that the overall effective
bulk and shear moduli of the composite should fall on Hashin-
Shtrikman’s bounds if the inclusion shapes are of the disk and
sphere shapes �Weng 1984; Tandon and Weng 1986; Benveniste
1987�. We find this to be an acceptable set of data because the
shape of sands �=1.13 is close to the sphere. Therefore, both
experiment and theory for the overall elastic moduli of mortar are
sufficiently accurate. To make an engineering connection, we fur-
ther display the overall effective Young’s modulus of mortar ver-
sus the volume concentration in Fig. 7. All experimental data are

volume fraction of aggregate, c1

0.0 0.2 0.4 0.6 0.8 1.0

el
as
tic
Y
ou
ng
m
od
ul
us
,G
P
a

10

20

30

40

50

experimental results

calculated from H-S lower bounds

calculated from H-S upper bounds

w/c=0.45

Fig. 7. Effective elastic Young’s modulus of mortars

strain, x10-3
0 1 2 3 4 5 6 7

st
re
ss
,M
P
a

0

10

20

30

40

50

60

experimental result
predicted curve

α=1

α=0w/c=0.45
c1=0.29

Fig. 8. Theory and experiment of the stress-strain curve of mortar at
c1=0.29
OF ENGINEERING MECHANICS © ASCE / DECEMBER 2008 / 1049

 ASCE license or copyright; see http://pubs.asce.org/copyright



seen to lie within the curves calculated from the upper and lower
bounds of the bulk and shear moduli �note that these two curves
for the Young’s modulus cannot be said to be bounds�.

Nonlinear Stress-Strain Curves of the Mortar
at Various Concentrations of Aggregates

From Table 1 and Fig. 1, it is evident that mortar with increasing
c1 has higher elastic Young’s modulus and peak stress, but has
lower Poisson’s ratio and peak strain. This trend persists up to
c1=0.49 �or 60 wt %�, beyond which the peak strength actually
decreases. We have examined the samples and found that, at such
a high concentration, there were insufficient binders to completely
surround the aggregates. Comparison between the theory and
experiment, therefore, is meaningful only up to c1=0.49 in the
mortar.

The stress-strain curves of mortar with the same material prop-
erties of cement paste are calculated from the developed compos-
ite theory, and depicted in Figs. 8–10. In these figures, the solid
line refers to the experimental data and the dotted lines are the
predicted curves with an average inclusion aspect ratio �→0 and
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at c1=0.49
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�=1. The results show that the experimental curves are all close
to the predicted ones with the spherical shape, regardless of the
volume concentration of inclusions, and are all lower than those
with the disk shape ��→0�. The theoretical predictions using the
measured shape of sands at �=1.13 are plotted in Fig. 11, along
with the three sets of experimental data. It is observed that the
predicted ones are in close agreement with the test results. This
agreement serves to substantiate the validity of the theory.

Concluding Remarks

In this paper, we have conducted some experiments to measure
the nonlinear stress-strain behavior of cement-based binder and
mortar at three different concentrations of aggregates, and further
proposed a micromechanics-based model to predict the overall
stress-strain curves of the cement-matrix composite from the
properties of the cement paste and aggregate content. In the the-
oretical development, the nonlinear stress-strain curve of the
binder was represented by the four-parameter Burgers model,
from which its secant Young’s modulus can be established as a
function of strain. The secant moduli of the matrix are then used
in the micromechanics-based composite model to find the overall
secant moduli of the composite at a given concentration of inclu-
sions. The overall nonlinear stress-strain relations of the cement-
matrix composite are then determined for a given concentration of
inclusions. It is found that, for the elastic behavior, the measured
properties of the composite lie within the H-S bounds, and that,
for the nonlinear response, the theory and experiment are in close
agreement up to 49% volume concentration of inclusions or
60 wt % aggregates. The proposed theory is micromechanics
based, and simple to use. It is also substantiated by experiments,
and can serve as a basis for the study of other concrete properties.
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Appendix

Without any summation over any repeated indices and with i, j, k
always following the 1, 2, 3 even permutation, the aij, bij, and bi

components are

aii = �3��1 − �0���1 − �0�2�SjjjjSkkkk − SjjkkSkkjj�

− ��1 − �0���1�0 − �0�1��Sjjjj + Skkkk − Sjjkk − Skkjj�

+ 3�0��1 − �0���1 − �0��Sjjjj + Skkkk� + 3�0�0��1 − �0�

+ �0��1�0 − �0�1��/D

aij = �3��1 − �0���1 − �0�2�SiikkSkkjj − SiijjSkkkk�

− ��1 − �0���1�0 − �0�1��Siikk + Skkjj − Siijj − Skkkk�

− 3�0��1 − �0���1 − �0�Skkjj + �0��1�0 − �0�1��/D

bij = �1 − �1/�0�/�1 − 2Sijij�1 − �1/�0��

b1 = a11�S1111 − 1� + a21S1122 + a31S1133

b2 = ��a12 + a13��S1111 − 1� + �a22 + a23�S1122 + �a32 + a33�S1133�/2

b3 = �a11�S2211 + S3311� + a21�S2222 + S3322 − 1�

+ a31�S3333 + S2233 − 1��/2

b4 = ��3a33 + a32��S3333 − 1� + �3a23 + a22�S3322 + �3a13 + a12�S3311

+ �3a32 + a33�S2233 + �3a22 + a23��S2222 − 1�

+ �3a12 + a13�S2211 + 2b23�2S2323 − 1��/8

b5 = ��a33 + 3a32��S3333 − 1� + �a23 + 3a22�S3322 + �a13 + 3a12�S3311

+ �a32 + 3a33�S2233 + �a22 + 3a23��S2222 − 1�

+ �a12 + 3a13�S2211 − 2b23�2S2323 − 1��/8

b6 = �b12�2S1212 − 1� + b13�2S1313 − 1��/2

D = ��1 − �0���1�0 − �0�1��S3333�S1111 + S2222 − S1122 − S2211�

+ S3322�S1133 + S2211 − S1111 − S2233�

+ S3311�S1122 + S2233 − S1133 − S2222� + S2211�S1133 − S1122�

+ S2222�S1111 − S1133� + S2233�S1122 − S1111��

+ 3��1 − �0���1 − �0�2�S3333�S1122S2211 − S1111S2222�

+ S3322�S1111S2233 − S1133S2211� + S3311�S1133S2222 − S1122S2233��

+ 3�0��1 − �0���1 − �0��S1122S2211 + S1133S3311 + S2233S3322

− S1111S2222 − S2222S3333 − S3333S1111� − �0��1�0 − �0�1�

� �S1111 + S1122 + S1133 + S2211 + S2222 + S2233 + S3311 + S3322

+ S3333� − 3�0�0��1 − �0��S1111 + S2222 + S3333 − 1� − 3�0�0�1

Notation

The following symbols are used in this paper:
A � area of specimen;
c0 � volume fraction of binder;
c1 � volume fraction of aggregate;

E � elastic Young’s modulus of composite;

JOURNAL
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E0 � elastic Young’s modulus of matrix;
Es � effective secant Young’s modulus of composite;
E0

s � secant Young’s modulus of matrix;
f�t� � applied force in terms of time t;

fu � peak stress;
L � gauge length;
S � Eshelby’s S-tensor;
� � aspect ratio of aggregate;
� � strain;
�̄ � overall strain of composite;

�u � peak strain;
� � elastic bulk modulus of composite;

�0 � elastic bulk modulus of matrix;
�1 � elastic bulk modulus of aggregate;
�s � effective secant bulk modulus of composite;
�0

s � secant bulk modulus of matrix;
� � elastic shear modulus of composite;

�0 � elastic shear modulus of matrix;
�1 � elastic shear modulus of aggregate;
�s � effective secant shear modulus of composite;
�0

s � secant shear modulus of matrix;
�0 � Poisson’s ratio of matrix;
� � stress; and
�̄ � overall stress of composite.
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